Given z 1 = 1 + 2 i z_1 = 1 + 2i z 1 = 1 + 2 i and let z 2 = x + i y z_2 = x+iy z 2 = x + i y .
(i) We have ∣ z 1 + z 2 ∣ = ∣ z 1 ∣ + ∣ z 2 ∣ |z_1 + z_2| = |z_1| + |z_2| ∣ z 1 + z 2 ∣ = ∣ z 1 ∣ + ∣ z 2 ∣
⟹ ∣ ( 1 + x ) + i ( 2 + y ) ∣ = ∣ 1 + 2 i ∣ + ∣ x + i y ∣ \implies |(1+x)+i(2+y)| = |1+2i|+|x+iy| ⟹ ∣ ( 1 + x ) + i ( 2 + y ) ∣ = ∣1 + 2 i ∣ + ∣ x + i y ∣
⟹ ( 1 + x ) 2 + ( 2 + y ) 2 = 5 + x 2 + y 2 \implies \sqrt{(1+x)^2+(2+y)^2}= \sqrt{5}+\sqrt{x^2+y^2} ⟹ ( 1 + x ) 2 + ( 2 + y ) 2 = 5 + x 2 + y 2
By squaring on both sides, we getx 2 + y 2 + 2 x + 4 y + 5 = 5 + x 2 + y 2 + 2 5 x 2 + 5 y 2 x^2+y^2+2x+4y+5 = 5 + x^2+y^2 +2\sqrt{5x^2+5y^2} x 2 + y 2 + 2 x + 4 y + 5 = 5 + x 2 + y 2 + 2 5 x 2 + 5 y 2
⟹ x + 2 y = 5 x 2 + 5 y 2 \implies x+2y = \sqrt{5x^2+5y^2} ⟹ x + 2 y = 5 x 2 + 5 y 2
Again by squaring on both side, we get x 2 + 4 y 2 + 4 x y = 5 x 2 + 5 y 2 x^2+4y^2 + 4xy = 5x^2+5y^2 x 2 + 4 y 2 + 4 x y = 5 x 2 + 5 y 2
⟹ 4 x 2 + y 2 − 4 x y = 0 \implies 4x^2 + y^2 - 4xy = 0 ⟹ 4 x 2 + y 2 − 4 x y = 0
⟹ ( 2 x − y ) 2 = 0 ⟹ 2 x − y = 0 ⟹ y = 2 x \implies(2x-y)^2 = 0 \\
\implies 2x- y = 0 \implies y = 2x ⟹ ( 2 x − y ) 2 = 0 ⟹ 2 x − y = 0 ⟹ y = 2 x .
Hence, z 2 = x ( 1 + 2 i ) z_2 = x(1+2i) z 2 = x ( 1 + 2 i ) .
(ii) We have ∣ z 1 + z 2 ∣ = ∣ z 1 ∣ − ∣ z 2 ∣ |z_1 + z_2| = |z_1| - |z_2| ∣ z 1 + z 2 ∣ = ∣ z 1 ∣ − ∣ z 2 ∣
⟹ ∣ ( 1 + x ) + i ( 2 + y ) ∣ = ∣ 1 + 2 i ∣ − ∣ x + i y ∣ \implies |(1+x)+i(2+y)| = |1+2i|-|x+iy| ⟹ ∣ ( 1 + x ) + i ( 2 + y ) ∣ = ∣1 + 2 i ∣ − ∣ x + i y ∣
⟹ ( 1 + x ) 2 + ( 2 + y ) 2 = 5 − x 2 + y 2 \implies \sqrt{(1+x)^2+(2+y)^2}= \sqrt{5}-\sqrt{x^2+y^2} ⟹ ( 1 + x ) 2 + ( 2 + y ) 2 = 5 − x 2 + y 2
By squaring on both sides, we get
x 2 + y 2 + 2 x + 4 y + 5 = 5 + x 2 + y 2 − 2 5 x 2 + 5 y 2 x^2+y^2+2x+4y+5 = 5 + x^2+y^2 -2\sqrt{5x^2+5y^2} x 2 + y 2 + 2 x + 4 y + 5 = 5 + x 2 + y 2 − 2 5 x 2 + 5 y 2
⟹ x + 2 y = − 5 x 2 + 5 y 2 \implies x+2y = -\sqrt{5x^2+5y^2} ⟹ x + 2 y = − 5 x 2 + 5 y 2
Again by squaring on both side, we get x 2 + 4 y 2 + 4 x y = 5 x 2 + 5 y 2 x^2+4y^2 + 4xy = 5x^2+5y^2 x 2 + 4 y 2 + 4 x y = 5 x 2 + 5 y 2
⟹ 4 x 2 + y 2 − 4 x y = 0 \implies 4x^2 + y^2 - 4xy = 0 ⟹ 4 x 2 + y 2 − 4 x y = 0
⟹ ( 2 x − y ) 2 = 0 ⟹ 2 x − y = 0 ⟹ y = 2 x \implies(2x-y)^2 = 0 \\
\implies 2x- y = 0 \implies y = 2x ⟹ ( 2 x − y ) 2 = 0 ⟹ 2 x − y = 0 ⟹ y = 2 x .
Hence, z 2 = x ( 1 + 2 i ) z_2 = x(1+2i) z 2 = x ( 1 + 2 i ) .
Comments