Answer to Question #124638 in Geometry for frank

Question #124638
1. A statuary hall is elliptical in shape. It measures 42 feet wide and 96 feet long. If a person is standing at one focus, her whisper can be heard by a person standing at the other focus. How far apart are the two people?


2. A conic section is given by the equation 57x^2+14√3 xy+43y^2-576=0, identity and sketch the conics.

3. Find the area of the region inside both the rose curve r=sin⁡〖(2θ)〗 and the circle r=cos⁡θ. Choose the most appropriate graph and intervals to the best of your interest to solve this question

4. Sketch and identify the curve defined by the parametric equations

y=t+1, x=t^2-2t , -4≤t≤6

5. Identify and sketch the curve 9x^2-4y^2-72x+8y+176=0 using the appropriate graph. Find the equations of the asymptotes.
1
Expert's answer
2020-07-12T17:50:38-0400

1.The equation of ellipse:

x2a2+y2b2=1\frac{x^2}{a^2}+\frac{y^2}{b^2}=1

For the given ellipse:

a=96/2=48,b=42/2=21a=96/2=48, b=42/2=21

The distance between two people:

L=2cL=2c , where

c=a2b2c=\sqrt{a^2-b^2}

Answer:

L=2482212=86.32L=2\sqrt{48^2-21^2}=86.32 feet


2.

57x2+143xy+43y2576=057x^2+14√3 xy+43y^2-576=0

We have:

Ax2+2Bxy+Cy2+2Dx+2Ey+F=0Ax^2+2Bxy+Cy^2+2Dx+2Ey+F=0

Canonical equation:

A1x2+C1y2+F1=0A_1x^2+C_1y^2+F_1=0

Let:

S=A+CS=A+C

δ=ABBC\delta=\begin{vmatrix} A & B \\ B & C \end{vmatrix}

Δ=ABDBCEDEF\Delta=\begin{vmatrix} A & B &D\\ B & C&E\\ D&E&F \end{vmatrix}

We have:

A=57,B=73,C=43,F=576A=57,B=7\sqrt{3},C=43,F=-576

Then:

S=100,δ=2304,Δ=1327104S=100,\delta=2304,\Delta=-1327104

Next, we solve the system:

A1+C1=SA_1+C_1=S

A1C1=δA_1C_1=\delta

A1C1F1=ΔA_1C_1F_1=\Delta

So, we get:

A1=36,C1=64,F1=576A_1=36,C_1=64,F_1=-576

So the canonical equation:

36x2+64y2=57636x^2+64y^2=576

x242+y232=1\frac{x^2}{4^2}+\frac{y^2}{3^2}=1

Another version of equation is:

x232+y242=1\frac{x^2}{3^2}+\frac{y^2}{4^2}=1

It is an ellipse with semiaxes 4 and 3.

The center can be calculated from system:

Ax0+By0+D=0Ax_0+By_0+D=0

Bx0+Cy0+E=0Bx_0+Cy_0+E=0


57x0+73+0=057x_0+7\sqrt{3}+0=0

73x0+43y0+0=07\sqrt{3}x_0+43y_0+0=0

x0=0,y0=0x_0=0,y_0=0


The angle of shift of the axes is:

tanα=A1AB=3,α=60°tan\alpha=\frac{A_1-A}{B}=-\sqrt{3},\alpha=-60\degree




3.Graphs intersection:

sin2θ=cosθsin2\theta=cos\theta

2sinθ=12sin\theta=1

θ=π/6\theta=\pi/6

Then:

S=0π/6sin22θdθ+π/6π/2cos2θdθ=S=\int_0^{\pi/6}sin^22\theta d\theta+\int_{\pi/6}^{\pi/2}cos^2\theta d\theta=

=(θ/2sin(4θ)/80π/6+(θ/2+sin(2θ)/4)π/6π/2==(\theta/2-sin(4\theta)/8|_0^{\pi/6}+(\theta/2+sin(2\theta)/4)|_{\pi/6}^{\pi/2}=

=π/12sin(2π/3)/8+π/4π/12sin(π/3)/4==\pi/12-sin(2\pi/3)/8+\pi/4-\pi/12-sin(\pi/3)/4=

=π/43/163/8=\pi/4-\sqrt{3}/16-\sqrt{3}/8



4.

t=y1t=y-1

x=(y1)22(y1)x=(y-1)^2-2(y-1)

x=y24y+3x=y^2-4y+3

3y7-3\leq y\leq7

This is parabola.



5.

9x24y272x+8y+176=09x^2-4y^2-72x+8y+176=0

9(x28x+16)4(y22y+1)+36=09(x^2-8x+16)-4(y^2-2y+1)+36=0

(y1)29(x4)24=1\frac{(y-1)^2}{9}-\frac{(x-4)^2}{4}=1

This is hyperbola.

For the asymptotes:

9(x4)2=4(y1)2369(x-4)^2=4(y-1)^2-36

x4=±23(y1)29x-4=\pm\frac{2}{3}\sqrt{(y-1)^2-9}

For yy\to\infin :

x4=±23(y1)x-4=\pm\frac{2}{3}(y-1)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment