1.The equation of ellipse:
"\\frac{x^2}{a^2}+\\frac{y^2}{b^2}=1"
For the given ellipse:
"a=96\/2=48, b=42\/2=21"
The distance between two people:
"L=2c" , where
"c=\\sqrt{a^2-b^2}"
Answer:
"L=2\\sqrt{48^2-21^2}=86.32" feet
2.
"57x^2+14\u221a3 xy+43y^2-576=0"
We have:
"Ax^2+2Bxy+Cy^2+2Dx+2Ey+F=0"
Canonical equation:
"A_1x^2+C_1y^2+F_1=0"
Let:
"S=A+C"
"\\delta=\\begin{vmatrix}\n A & B \\\\\n B & C\n\\end{vmatrix}"
"\\Delta=\\begin{vmatrix}\n A & B &D\\\\\n B & C&E\\\\\n D&E&F\n\\end{vmatrix}"
We have:
"A=57,B=7\\sqrt{3},C=43,F=-576"
Then:
"S=100,\\delta=2304,\\Delta=-1327104"
Next, we solve the system:
"A_1+C_1=S"
"A_1C_1=\\delta"
"A_1C_1F_1=\\Delta"
So, we get:
"A_1=36,C_1=64,F_1=-576"
So the canonical equation:
"36x^2+64y^2=576"
"\\frac{x^2}{4^2}+\\frac{y^2}{3^2}=1"
Another version of equation is:
"\\frac{x^2}{3^2}+\\frac{y^2}{4^2}=1"
It is an ellipse with semiaxes 4 and 3.
The center can be calculated from system:
"Ax_0+By_0+D=0"
"Bx_0+Cy_0+E=0"
"57x_0+7\\sqrt{3}+0=0"
"7\\sqrt{3}x_0+43y_0+0=0"
"x_0=0,y_0=0"
The angle of shift of the axes is:
"tan\\alpha=\\frac{A_1-A}{B}=-\\sqrt{3},\\alpha=-60\\degree"
3.Graphs intersection:
"sin2\\theta=cos\\theta"
"2sin\\theta=1"
"\\theta=\\pi\/6"
Then:
"S=\\int_0^{\\pi\/6}sin^22\\theta d\\theta+\\int_{\\pi\/6}^{\\pi\/2}cos^2\\theta d\\theta="
"=(\\theta\/2-sin(4\\theta)\/8|_0^{\\pi\/6}+(\\theta\/2+sin(2\\theta)\/4)|_{\\pi\/6}^{\\pi\/2}="
"=\\pi\/12-sin(2\\pi\/3)\/8+\\pi\/4-\\pi\/12-sin(\\pi\/3)\/4="
"=\\pi\/4-\\sqrt{3}\/16-\\sqrt{3}\/8"
4.
"t=y-1"
"x=(y-1)^2-2(y-1)"
"x=y^2-4y+3"
"-3\\leq y\\leq7"
This is parabola.
5.
"9x^2-4y^2-72x+8y+176=0"
"9(x^2-8x+16)-4(y^2-2y+1)+36=0"
"\\frac{(y-1)^2}{9}-\\frac{(x-4)^2}{4}=1"
This is hyperbola.
For the asymptotes:
"9(x-4)^2=4(y-1)^2-36"
"x-4=\\pm\\frac{2}{3}\\sqrt{(y-1)^2-9}"
For "y\\to\\infin" :
"x-4=\\pm\\frac{2}{3}(y-1)"
Comments
Leave a comment