If the normal at the point
"P(at_1^2 ,2at_1 )" meets the parabola "y^2 =4ax" again at "Q(at^2_2 ,2at^2\n\u200b\t\n )" then
t2=−t1-2/t1
"Q=(a(t_1+{2\\over t_1})^2, -2a(t_1+{2\\over t_1}))"
Let M(x,y) be the midpoint of PQ
"(x, y)=\\big(\\dfrac{at_1^2+a(t_1+\\dfrac{2}{t_1})^2}{2}, \\dfrac{2at_1-2a(t_1+\\dfrac{2}{t_1})}{2}\\big)"
"t_1=-\\dfrac{2a}{y}"
"x=at_1^2+2a+\\dfrac{2a}{t_1^2}"
"x-2a=\\dfrac{4a^3}{y^2}+\\dfrac{y^2}{2a}"
"2(x-2a)=\\dfrac{y^2}{a}+\\dfrac{8a^3}{y^2}"
"PQ^2=(-at_1^2+a(t_1+\\dfrac{2}{t_1})^2)^2+(-2a(t_1+{2\\over t_1})-2at_1)^2"
"PQ^2=(4a+\\dfrac{4a}{t_1^2})^2+(4at_1+\\dfrac{4a}{t_1})^2"
"PQ^2=16a^2(1+\\dfrac{2}{t_1^2}+\\dfrac{1}{t_1^2}+t_1^2+2+\\dfrac{1}{t_1^4})"
"PQ^2=16a^2(t_1^2+\\dfrac{3}{t_1^2}+\\dfrac{1}{t_1^4}+3)"
Consider the function
"f(u)=u+\\dfrac{3}{u}+\\dfrac{1}{u^2}+3, u>0; \n\nf'(u)=1-\\dfrac{3}{u^2}-\\dfrac{2}{u^3} ;\nf'(u)=0=>\\dfrac{u^3-3u-2}{u^3}=0; \nu^2(u-2)+2u(u-2)+(u-2)=0; \n(u-2)(u^2+2u+1)=0;\n(u-2)(u+1)^2=0"
Since u>0, we take u=2
0<u<2,f′(u)<0,f(u) decreases
u>2,f′(u)>0,f(u) increases
"f(2)=2+\\dfrac{3}{2}+\\dfrac{1}{4}+3=\\dfrac{27}{4}"
"PQ^2\\geq16a^2(\\dfrac{27}{4})"
"PQ^2\\geq108a^2"
"PQ\\geq6\\sqrt{3}a, a>0"
b) A hyperbola with a horizontal transverse axis and center at (h, k) has one asymptote with equation y = k + a(x - h) and the other with equation y = k - a(x - h).a = distance from vertices to the center"y=\\frac{\\frac{\\sqrt{33}}{2}}{\\frac{\\sqrt{33}}{2}}\\left(x-\\left(-1\\right)\\right)+\\frac{1}{2},\\:\\quad \\:y=-\\frac{\\frac{\\sqrt{33}}{2}}{\\frac{\\sqrt{33}}{2}}\\left(x-\\left(-1\\right)\\right)+\\frac{1}{2}"
"y=x+1+\\frac{1}{2},\\:\\quad \\:y=-\\left(x+1\\right)+\\frac{1}{2}"
Comments
Leave a comment