Question #124667
(c) Show that for all values of θ the determinant







1 sin θ 1
− sin θ 1 sin θ
−1 − sin θ 1







lies between 2 and 4 inclusive. State one value of θ for which the determinant has the
value 2, and one for which it has the value 4.
1
Expert's answer
2020-07-07T20:09:24-0400

1sinθ1sinθ1sinθ1sinθ1​​\begin{vmatrix} 1 & sin \theta & 1\\ -sin \theta & 1 & sin \theta \\ -1& -sin \theta & 1 \end{vmatrix} ​ ​

=111+(1)sinθsinθ+(sinθ)(sinθ)1=1\cdot1\cdot1+(-1)\cdot sinθ \cdot sinθ +(- sinθ) \cdot (- sinθ) \cdot 1-

(1)11(sinθ)sinθ1-(-1) \cdot 1 \cdot 1 - (-sinθ) \cdot sinθ \cdot 1-

1(sinθ)sinθ=2+2(sinθ)2- 1 \cdot (-sinθ) \cdot sinθ= 2+2(sinθ)^2


1sinθ1    0(sinθ)21-1\le sinθ \le 1 \implies 0\le (sinθ)^2 \le 1

Then

22+2(sinθ)242 \le 2+2(sinθ)^2 \le 4


If θ=0θ=0 then 2+2(sinθ)2=22+2(sinθ)^2 =2

If θ=π/2θ=π/2 then 2+2(sinθ)2=42+2(sinθ)^2 =4



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS