∣1sinθ1−sinθ1sinθ−1−sinθ1∣\begin{vmatrix} 1 & sin \theta & 1\\ -sin \theta & 1 & sin \theta \\ -1& -sin \theta & 1 \end{vmatrix} ∣∣1−sinθ−1sinθ1−sinθ1sinθ1∣∣
=1⋅1⋅1+(−1)⋅sinθ⋅sinθ+(−sinθ)⋅(−sinθ)⋅1−=1\cdot1\cdot1+(-1)\cdot sinθ \cdot sinθ +(- sinθ) \cdot (- sinθ) \cdot 1-=1⋅1⋅1+(−1)⋅sinθ⋅sinθ+(−sinθ)⋅(−sinθ)⋅1−
−(−1)⋅1⋅1−(−sinθ)⋅sinθ⋅1−-(-1) \cdot 1 \cdot 1 - (-sinθ) \cdot sinθ \cdot 1-−(−1)⋅1⋅1−(−sinθ)⋅sinθ⋅1−
−1⋅(−sinθ)⋅sinθ=2+2(sinθ)2- 1 \cdot (-sinθ) \cdot sinθ= 2+2(sinθ)^2−1⋅(−sinθ)⋅sinθ=2+2(sinθ)2
−1≤sinθ≤1 ⟹ 0≤(sinθ)2≤1-1\le sinθ \le 1 \implies 0\le (sinθ)^2 \le 1−1≤sinθ≤1⟹0≤(sinθ)2≤1
Then
2≤2+2(sinθ)2≤42 \le 2+2(sinθ)^2 \le 42≤2+2(sinθ)2≤4
If θ=0θ=0θ=0 then 2+2(sinθ)2=22+2(sinθ)^2 =22+2(sinθ)2=2
If θ=π/2θ=π/2θ=π/2 then 2+2(sinθ)2=42+2(sinθ)^2 =42+2(sinθ)2=4
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments