"\\begin{vmatrix} 1 & sin \\theta & 1\\\\ -sin \\theta & 1 & sin \\theta \\\\ -1& -sin \\theta & 1 \\end{vmatrix}\n\n\u200b\t\n \n\n\u200b"
"=1\\cdot1\\cdot1+(-1)\\cdot sin\u03b8 \\cdot sin\u03b8 +(- sin\u03b8) \\cdot (- sin\u03b8) \\cdot 1-"
"-(-1) \\cdot 1 \\cdot 1 - (-sin\u03b8) \\cdot sin\u03b8 \\cdot 1-"
"- 1 \\cdot (-sin\u03b8) \\cdot sin\u03b8= 2+2(sin\u03b8)^2"
"-1\\le sin\u03b8 \\le 1\n\\implies\n 0\\le (sin\u03b8)^2 \\le 1"
Then
"2 \\le 2+2(sin\u03b8)^2 \\le 4"
If "\u03b8=0" then "2+2(sin\u03b8)^2\n =2"
If "\u03b8=\u03c0\/2" then "2+2(sin\u03b8)^2\n =4"
Comments
Leave a comment