P (ct,c/t) and Q (cT,c/T)
Slope of line joining PQ is="\\dfrac{(c\/T \u2013 c\/t)}{(cT \u2013 ct)}= \u2013 1\/Tt"
Equation of the line using slope-point form is "(y\u2013ct)=(\u20131\/cTt)(x\u2013c\/t)"
Simplifying we get "x+tTy=c(t+T)"
M is the midpoint of PQ. By midpoint formula,
"M\u2261(c(t+T)\/2,c(1\/t+1\/T)\/2)"
"i.e.M(c(t+T)\/2,c(t+T)\/2tT)"
By distance formula,
"OM=\\sqrt{(\\frac{(2c(t+T)\u200b\u20130)}2)^2+(\\frac{c(t+T)}{2tT}\u200b\u20130)^2}"
Simplify to get OM ="[c(t + T)\\sqrt{(1 + T^2t^2)] \/ 2}] \u2026...(1)"
Put y = 0 in the equation of PQ for the coordinates of N.
"N\u2261(c(t+T),0)"
Similarly MN ="\\sqrt{{(\\dfrac{c(t + T)}2 \u2013 c(t + T)})^2 + {{(\\dfrac{c(t + T)}{2tT} \u2013 0}})^2}"
Simplifying we get MN="[c(t+T)(1+T^2t^2)\/2\n\u200b]\u2026...(2)"
From (1) & (2),
OM = MN
Comments
Leave a comment