Volume of Hexagonal pyramid is given by 32a2h\dfrac{\sqrt3}{2}a^2h23a2h ; where a is the base edge and h is the height
base perimeter = 6*a
6=6*a
a=1 m
lateral edge =a2+h2\sqrt{a^2+h^2}a2+h2 =12+h2=2,=\sqrt{1^2+h^2}=2,=12+h2=2,
h=3h=\sqrt{3}h=3
Volume = 32a2h\dfrac{\sqrt3}{2}a^2h23a2h =32123=3/2\dfrac{\sqrt3}{2}1^2\sqrt3=3/223123=3/2
Lateral surface area = 3ah2+3a24=3∗1∗3+3/4=315/23a\sqrt{h^2+\dfrac{3a^2}{4}}=3*1*\sqrt{3+3/4}=3\sqrt{15}/23ah2+43a2=3∗1∗3+3/4=315/2
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments