Equation of ellipse is given as
4 x 2 + 9 y 2 = 36 4x^2 + 9y^2 = 36 4 x 2 + 9 y 2 = 36 , the general form of equation is
x 2 9 + y 2 4 = 1 \frac{x^2}{9} +\frac{y^2}{4} = 1 9 x 2 + 4 y 2 = 1
on comparing with general equation of ellipse
x 2 a 2 + y 2 b 2 = 1 \frac{x^2}{a^2}+\frac{y^2}{b^2}= 1 a 2 x 2 + b 2 y 2 = 1
here, a= 3 , and b=2,
here the position vector of point is given as -2i-3j so the coordinate of point will be (-2,-3)
Now, we know that equation of tangent to the given ellipse with m as slope will be
y = m x + a 2 m 2 + b 2 y= mx+\sqrt{a^2m^2+ b^2} y = m x + a 2 m 2 + b 2
y = m x + 9 m 2 + 4 y= mx+ \sqrt{9m^2+4} y = m x + 9 m 2 + 4
and it passes through the point (-2,-3)
so the equation become
− 3 = − 2 m + 9 m 2 + 4 -3=-2m+\sqrt{9m^2+4} − 3 = − 2 m + 9 m 2 + 4
2 m − 3 = 9 m 2 + 4 2m-3=\sqrt{9m^2+4} 2 m − 3 = 9 m 2 + 4
now squaring the both sides we get
( 2 m − 3 ) 2 = ( 9 m 2 + 4 ) 2 (2m-3)^2= (\sqrt{9m^2+4})^2 ( 2 m − 3 ) 2 = ( 9 m 2 + 4 ) 2
4 m 2 + 9 − 12 m = 9 m 2 + 4 4m^2+9-12m= 9m^2+4 4 m 2 + 9 − 12 m = 9 m 2 + 4
5 m 2 + 12 m − 5 = 0 5m^2+12m-5=0 5 m 2 + 12 m − 5 = 0
this is quadratic equation we can find the value of m by solving this equation using quadratic formula,
m 1 = − 12 + 144 + 100 10 , m 2 = − 12 − 144 + 100 10 m_1=\frac{-12 +\sqrt{144+100}}{10} ,m_2=\frac{-12 -\sqrt{144+100}}{10} m 1 = 10 − 12 + 144 + 100 , m 2 = 10 − 12 − 144 + 100 .
These are the slopes of two tangents from the ellipse passing through the point(-2,-3),
now both will be perpendicular is
m 1 m 2 = − 1 m_1m_2=-1 m 1 m 2 = − 1
LHS= = = − 12 + 144 + 100 10 × − 12 − 144 + 100 10 \frac{-12 +\sqrt{144+100}}{10} \times \frac{-12 -\sqrt{144+100}}{10} 10 − 12 + 144 + 100 × 10 − 12 − 144 + 100
LHS=-1 = RHS
so the tangents are perpendicular
Hence proved.........
Comments