Question #104571
Find the eccentricity of the ellipse 3x
2 + 4y
2 = 12 and the equation of the tangent to
the ellipse at the point (1, 3/2). If this tangent meets the y-axis at the point G, and
S and S
′ are the foci of the ellipse, find the area of triangle SS′G.
1
Expert's answer
2020-03-05T12:20:18-0500

3x2+4y2=123x^2+4y^2=12

divided by 12 on both sides

312x2+412y2=1{3 \above{2pt} 12}x^2+{4 \above{2pt} 12}y^2=1

x24+y23=1{x^2 \above{2pt} 4}+{y^2 \above{2pt} 3}=1

The eccentricity is a measure of how much the ellipse deviates from the circle.For an Ellipse with major axis parallel to the x-axis, the eccentricity is a2b2a{ \sqrt{a^2-b^2}\above{2pt} a}

== a2b2a{ \sqrt{a^2-b^2}\above{2pt} a}

Calculate Ellipse properties

3x2+4y2=123x^2+4y^2=12 : Ellipse with center (h,k)=(0,0)(h,k)=(0,0) , semi-major axis a=2a=2 ,semi -minor axis

b=3b=\sqrt{3}

3x2+4y2=123x^2+4y^2=12

Ellipse Standard Equation:

(xh)2a2+(yk)2b2=1{(x-h)^2 \above{2pt} a^2}+{(y-k)^2 \above{2pt} b^2}=1 is the Ellipse standard equation with center (h,k) and a,b are the semi-major and semi-minor axes .

Rewrite 3x2+4y2=123x^2+4y^2=12 in the form of standard ellipse equation .

3x2+4y2=123x^2+4y^2=12

divided by 12 on both sides

312x2+412y2=1{3 \above{2pt} 12}x^2+{4 \above{2pt} 12}y^2=1

x24+y23=1{x^2 \above{2pt} 4}+{y^2 \above{2pt} 3}=1

Rewrite in standard form

(x0)222+(y0)2(3)2=1{(x-0)^2 \above{2pt} 2^2}+{(y-0)^2 \above{2pt} (\sqrt{3})^2}=1

Therefore Ellipse properties are :

(h,k)=(0,0),a=2,b=3(h,k)=(0,0), a=2 ,b=\sqrt{3}

a>ba>b therefore a is semi-major axis and b is semi-minor axis.

Ellipse with center (h,k)=(0,0)(h,k)=(0,0) ,semi-major axis a=2a=2 , semi-minor axis b=3,b=\sqrt{3},

22(3)22{ \sqrt{2^2-(\sqrt{3})^2}\above{2pt} 2}

=12={1 \above{2pt} 2}



the equation of the tangent to

the ellipse at the point (1, 3/2). If this tangent meets the y-axis at the point G, and

S and S

Equation tangent will be

y=mx+a2m2+b2y=mx+\sqrt{a^2m^2+b^2}

y=mx+4m2+(3)2y=mx+\sqrt{4m^2+(\sqrt{3})^2}

As this line passes through (1,3/2 )

Therefore 32m={3 \above{2pt} 2}-m= 4m2+(3)2\sqrt{4m^2+(\sqrt{3})^2}

    \implies 94+m23m=4m2+(3)2{9 \above{2pt} 4}+m^2-3m=4m^2+(\sqrt{3})^2

    9+4m212m=16m2+4(3)2\implies 9+4m^2-12m=16m^2+4(\sqrt{3})^2

    9+4m212m16m212=0\implies 9+4m^2-12m-16m^2-12=0

    12m212m3=0\implies -12m^2-12m-3=0

by quadratic formula

m=12m=-{1 \above{2pt} 2}

y=12x+2y=-{1\above{2pt} 2}x+2


Area of triangle SS'G=12(12)2+(1)2{1 \above{2pt} 2}\sqrt{({1 \above{2pt} 2})^2+(1)^2}

=12={1 \above{2pt} 2} 54\sqrt{{5 \above{2pt} 4}}

=145={1 \above{2pt} 4}\sqrt{5}









Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS