"3x^2+4y^2=12"
divided by 12 on both sides
"{3 \\above{2pt} 12}x^2+{4 \\above{2pt} 12}y^2=1"
"{x^2 \\above{2pt} 4}+{y^2 \\above{2pt} 3}=1"
The eccentricity is a measure of how much the ellipse deviates from the circle.For an Ellipse with major axis parallel to the x-axis, the eccentricity is "{ \\sqrt{a^2-b^2}\\above{2pt} a}"
"=" "{ \\sqrt{a^2-b^2}\\above{2pt} a}"
Calculate Ellipse properties
"3x^2+4y^2=12" : Ellipse with center "(h,k)=(0,0)" , semi-major axis "a=2" ,semi -minor axis
"b=\\sqrt{3}"
"3x^2+4y^2=12"
Ellipse Standard Equation:
"{(x-h)^2 \\above{2pt} a^2}+{(y-k)^2 \\above{2pt} b^2}=1" is the Ellipse standard equation with center (h,k) and a,b are the semi-major and semi-minor axes .
Rewrite "3x^2+4y^2=12" in the form of standard ellipse equation .
"3x^2+4y^2=12"
divided by 12 on both sides
"{3 \\above{2pt} 12}x^2+{4 \\above{2pt} 12}y^2=1"
"{x^2 \\above{2pt} 4}+{y^2 \\above{2pt} 3}=1"
Rewrite in standard form
"{(x-0)^2 \\above{2pt} 2^2}+{(y-0)^2 \\above{2pt} (\\sqrt{3})^2}=1"
Therefore Ellipse properties are :
"(h,k)=(0,0), a=2 ,b=\\sqrt{3}"
"a>b" therefore a is semi-major axis and b is semi-minor axis.
Ellipse with center "(h,k)=(0,0)" ,semi-major axis "a=2" , semi-minor axis "b=\\sqrt{3},"
"{ \\sqrt{2^2-(\\sqrt{3})^2}\\above{2pt} 2}"
"={1 \\above{2pt} 2}"
the equation of the tangent to
the ellipse at the point (1, 3/2). If this tangent meets the y-axis at the point G, and
S and S
Equation tangent will be
"y=mx+\\sqrt{a^2m^2+b^2}"
"y=mx+\\sqrt{4m^2+(\\sqrt{3})^2}"
As this line passes through (1,3/2 )
Therefore "{3 \\above{2pt} 2}-m=" "\\sqrt{4m^2+(\\sqrt{3})^2}"
"\\implies" "{9 \\above{2pt} 4}+m^2-3m=4m^2+(\\sqrt{3})^2"
"\\implies 9+4m^2-12m=16m^2+4(\\sqrt{3})^2"
"\\implies 9+4m^2-12m-16m^2-12=0"
"\\implies -12m^2-12m-3=0"
by quadratic formula
"m=-{1 \\above{2pt} 2}"
"y=-{1\\above{2pt} 2}x+2"
Area of triangle SS'G="{1 \\above{2pt} 2}\\sqrt{({1 \\above{2pt} 2})^2+(1)^2}"
"={1 \\above{2pt} 2}" "\\sqrt{{5 \\above{2pt} 4}}"
"={1 \\above{2pt} 4}\\sqrt{5}"
Comments
Leave a comment