) Let T be a normal operator on a finite dimensional Hilbert space H
with spectrumπ1, π2, β¦ β¦ , ππ , . Then prove that
i) T is self - adjointβΊ each ππ,,is real
ii) T is positive βΊ each ππ β₯ 0
iii) T is unitary βΊ ππ =1 for each .
A complex number Ξ» β C is called an eigenvalue of T β B(H) if there exists a vector 0 "\\neq" x β H such that Tx = Ξ»x
i)
Let Ξ» be an eigenvalue of T and x be the corresponding eigenvector. Then Tx = Ξ»x.
"\\lambda||x||^ 2 = \u03bb \\langle x,x\\rangle = \\langle \u03bb x,x\\rangle = \\langle T x,x\\rangle = \\langle x,Tx\\rangle= \\langle x, \u03bb x\\rangle =\\overline{\\lambda}||x||^ 2"
Since x "\\neq" 0, we have Ξ» = "\\overline{ \u03bb}"
ii)
T is positive if "Tx\\ge 0"
then Tx = Ξ»x "\\ge 0 \\implies \\lambda \\ge 0"
iii)
"Tx=T^{-1}x"
"\\lambda x=\\lambda^{-1} x \\implies \\lambda=1"
Comments
Leave a comment