β£ f ( x ) β£ = |f(x)|= β£ f ( x ) β£ = β£ β« β 1 0 x ( t ) d t β β« 0 1 x ( t ) d t β£ β€ β£ β« β 1 0 x ( t ) d t β£ + β£ β« 0 1 x ( t ) d t β£ |\int^0_{-1}x(t)dt-\int^1_{0}x(t)dt|\le |\int^0_{-1}x(t)dt|+|\int^1_{0}x(t)dt| β£ β« β 1 0 β x ( t ) d t β β« 0 1 β x ( t ) d t β£ β€ β£ β« β 1 0 β x ( t ) d t β£ + β£ β« 0 1 β x ( t ) d t β£
β£ β« β 1 0 x ( t ) d t β£ + β£ β« 0 1 x ( t ) d t β£ β€ sup β‘ t β [ β 1 , 0 ] β£ x ( t ) β£ + sup β‘ t β [ 0 , 1 ] β£ x ( t ) β£ β€ 2 sup β‘ t β [ β 1 , 1 ] β£ x ( t ) β£ = |\int^0_{-1}x(t)dt|+|\int^1_{0}x(t)dt|\le {\sup}_{t\isin [-1,0]}|x(t)|+{\sup}_{t\isin [0,1]}|x(t)|\le 2{\sup}_{t\isin [-1,1]}|x(t)|= β£ β« β 1 0 β x ( t ) d t β£ + β£ β« 0 1 β x ( t ) d t β£ β€ sup t β [ β 1 , 0 ] β β£ x ( t ) β£ + sup t β [ 0 , 1 ] β β£ x ( t ) β£ β€ 2 sup t β [ β 1 , 1 ] β β£ x ( t ) β£ =
= 2 β£ β£ x ( t ) β£ β£ β =2||x(t)||_{\infin} = 2β£β£ x ( t ) β£ β£ β β
thus, β£ β£ f β£ β£ β€ 2 ||f||\le2 β£β£ f β£β£ β€ 2
if we consider the sequence
x n β ( t ) = { 1 if β 1 β€ t β€ β 1 / n β n t if β 1 / n < t < 1 / n β 1 if 1 / n β€ t β€ 1 x_n^*(t)=\begin{cases}
1 &\text{if } -1\le t\le -1/n \\
-nt &\text{if } -1/n< t< 1/n \\
-1 &\text{if } 1/n\le t\le 1
\end{cases} x n β β ( t ) = β© β¨ β§ β 1 β n t β 1 β if β 1 β€ t β€ β 1/ n if β 1/ n < t < 1/ n if 1/ n β€ t β€ 1 β
x n β ( t ) β C [ β 1 , 1 ] x_n^*(t)\isin C[-1,1] x n β β ( t ) β C [ β 1 , 1 ] for each n β N n\isin N n β N
Then we see that
β£ β£ f β£ β£ = s u p x β C [ β 1 , 1 ] : β£ β£ x β£ β£ = 1 β£ f ( x ) β£ β₯ β£ f ( x n β ) β£ β n β N ||f||=sup_{x\in C[-1,1]:||x||=1}|f(x)|\ge |f(x_n^*)|\forall n \isin N β£β£ f β£β£ = s u p x β C [ β 1 , 1 ] : β£β£ x β£β£ = 1 β β£ f ( x ) β£ β₯ β£ f ( x n β β ) β£β n β N
since β£ f ( x n β ) β£ = β£ 2 + 1 / n 2 β 1 / n β£ |f(x_n^*)|=|2+1/n^2-1/n| β£ f ( x n β β ) β£ = β£2 + 1/ n 2 β 1/ n β£ :
β£ β£ f β£ β£ β₯ β£ 2 + 1 / n 2 β 1 / n β£ β
β βΉ β
β β£ β£ f β£ β£ β₯ 2 ||f||\ge |2+1/n^2-1/n| \implies ||f|| \ge 2 β£β£ f β£β£ β₯ β£2 + 1/ n 2 β 1/ n β£ βΉ β£β£ f β£β£ β₯ 2
so, β£ β£ f β£ β£ = 2 ||f|| =2 β£β£ f β£β£ = 2
Comments