Question #272575

Find the norm of the linear functional f defined by

𝑓 π‘₯ =integral -1 to 0π‘₯ 𝑑 𝑑𝑑 βˆ’ integral 0 to 1π‘₯ 𝑑 𝑑𝑑

whereπ‘₯ ∈ [βˆ’1 , 1]


1
Expert's answer
2021-11-30T16:41:52-0500

∣f(x)∣=|f(x)|=βˆ£βˆ«βˆ’10x(t)dtβˆ’βˆ«01x(t)dtβˆ£β‰€βˆ£βˆ«βˆ’10x(t)dt∣+∣∫01x(t)dt∣|\int^0_{-1}x(t)dt-\int^1_{0}x(t)dt|\le |\int^0_{-1}x(t)dt|+|\int^1_{0}x(t)dt|


βˆ£βˆ«βˆ’10x(t)dt∣+∣∫01x(t)dtβˆ£β‰€sup⁑t∈[βˆ’1,0]∣x(t)∣+sup⁑t∈[0,1]∣x(t)βˆ£β‰€2sup⁑t∈[βˆ’1,1]∣x(t)∣=|\int^0_{-1}x(t)dt|+|\int^1_{0}x(t)dt|\le {\sup}_{t\isin [-1,0]}|x(t)|+{\sup}_{t\isin [0,1]}|x(t)|\le 2{\sup}_{t\isin [-1,1]}|x(t)|=


=2∣∣x(t)∣∣∞=2||x(t)||_{\infin}


thus, ∣∣fβˆ£βˆ£β‰€2||f||\le2


if we consider the sequence

xnβˆ—(t)={1if βˆ’1≀tβ‰€βˆ’1/nβˆ’ntif βˆ’1/n<t<1/nβˆ’1if 1/n≀t≀1x_n^*(t)=\begin{cases} 1 &\text{if } -1\le t\le -1/n \\ -nt &\text{if } -1/n< t< 1/n \\ -1 &\text{if } 1/n\le t\le 1 \end{cases}


xnβˆ—(t)∈C[βˆ’1,1]x_n^*(t)\isin C[-1,1] for each n∈Nn\isin N

Then we see that

∣∣f∣∣=supx∈C[βˆ’1,1]:∣∣x∣∣=1∣f(x)∣β‰₯∣f(xnβˆ—)βˆ£βˆ€n∈N||f||=sup_{x\in C[-1,1]:||x||=1}|f(x)|\ge |f(x_n^*)|\forall n \isin N

since ∣f(xnβˆ—)∣=∣2+1/n2βˆ’1/n∣|f(x_n^*)|=|2+1/n^2-1/n| :

∣∣f∣∣β‰₯∣2+1/n2βˆ’1/nβˆ£β€…β€ŠβŸΉβ€…β€Šβˆ£βˆ£f∣∣β‰₯2||f||\ge |2+1/n^2-1/n| \implies ||f|| \ge 2


so, ∣∣f∣∣=2||f|| =2


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS