Find the norm of the linear functional f defined by
π π₯ =integral -1 to 0π₯ π‘ ππ‘ β integral 0 to 1π₯ π‘ ππ‘
whereπ₯ β [β1 , 1]
"|f(x)|=""|\\int^0_{-1}x(t)dt-\\int^1_{0}x(t)dt|\\le |\\int^0_{-1}x(t)dt|+|\\int^1_{0}x(t)dt|"
"|\\int^0_{-1}x(t)dt|+|\\int^1_{0}x(t)dt|\\le {\\sup}_{t\\isin [-1,0]}|x(t)|+{\\sup}_{t\\isin [0,1]}|x(t)|\\le 2{\\sup}_{t\\isin [-1,1]}|x(t)|="
"=2||x(t)||_{\\infin}"
thus, "||f||\\le2"
if we consider the sequence
"x_n^*(t)=\\begin{cases}\n 1 &\\text{if } -1\\le t\\le -1\/n \\\\\n -nt &\\text{if } -1\/n< t< 1\/n \\\\\n -1 &\\text{if } 1\/n\\le t\\le 1\n\\end{cases}"
"x_n^*(t)\\isin C[-1,1]" for each "n\\isin N"
Then we see that
"||f||=sup_{x\\in C[-1,1]:||x||=1}|f(x)|\\ge |f(x_n^*)|\\forall n \\isin N"
since "|f(x_n^*)|=|2+1\/n^2-1\/n|" :
"||f||\\ge |2+1\/n^2-1\/n| \\implies ||f|| \\ge 2"
so, "||f|| =2"
Comments
Leave a comment