β£f(x)β£=β£β«β10βx(t)dtββ«01βx(t)dtβ£β€β£β«β10βx(t)dtβ£+β£β«01βx(t)dtβ£
β£β«β10βx(t)dtβ£+β£β«01βx(t)dtβ£β€suptβ[β1,0]ββ£x(t)β£+suptβ[0,1]ββ£x(t)β£β€2suptβ[β1,1]ββ£x(t)β£=
=2β£β£x(t)β£β£ββ
thus, β£β£fβ£β£β€2
if we consider the sequence
xnββ(t)=β©β¨β§β1βntβ1βif β1β€tβ€β1/nif β1/n<t<1/nif 1/nβ€tβ€1β
xnββ(t)βC[β1,1] for each nβN
Then we see that
β£β£fβ£β£=supxβC[β1,1]:β£β£xβ£β£=1ββ£f(x)β£β₯β£f(xnββ)β£βnβN
since β£f(xnββ)β£=β£2+1/n2β1/nβ£ :
β£β£fβ£β£β₯β£2+1/n2β1/nβ£βΉβ£β£fβ£β£β₯2
so, β£β£fβ£β£=2
Comments