Prove that
i) 𝑑 𝑎𝑥 , 𝑎𝑦 = 𝑎 d(x,y)
ii)𝑑 𝑎 + 𝑥 , 𝑎 + 𝑦 = 𝑑 𝑥 , 𝑦
where d is a metric induced by on a normed space X
d(x,y)=∑∣xi−yi∣d(x,y)=\sum |x_i-y_i|d(x,y)=∑∣xi−yi∣
i)
d(ax,ay)=∑∣axi−ayi∣=a∑∣xi−yi∣=ad(x,y)d(ax,ay)=\sum |ax_i-ay_i|=a\sum |x_i-y_i|=ad(x,y)d(ax,ay)=∑∣axi−ayi∣=a∑∣xi−yi∣=ad(x,y)
ii)
d(a+x,a+y)=∑∣a+xi−yi−a∣=∑∣xi−yi∣=d(x,y)d(a+x,a+y)=\sum |a+x_i-y_i-a|=\sum |x_i-y_i|=d(x,y)d(a+x,a+y)=∑∣a+xi−yi−a∣=∑∣xi−yi∣=d(x,y)
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments