Show that the space R[a,b] of all Riemann integrable functions on the interval [a,b] is a linear space over a vector field R
∫((f+g)(x))dx=∫f(x)dx+∫g(x)dx\int((f+g)(x))dx=\int f(x)dx+\int g(x)dx∫((f+g)(x))dx=∫f(x)dx+∫g(x)dx
∫(af(x))dx=a∫f(x)dx\int(af(x))dx=a\int f(x)dx∫(af(x))dx=a∫f(x)dx
So, space R[a,b] of all Riemann integrable functions is a linear space.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments