Lex X be an inner product space over R. If x ,y∈ X are such that ||x + y||=||x-y||then show that x ⊥ y.
Let "\\langle \\cdot\\ , \\cdot\\rangle" be inner product on "X" .
Elements "x,y\\in X" are such that "\\|x+y\\|=\\|x-y\\|" .
If "\\|x+y\\|=\\|x-y\\|" , then "\\|x+y\\|^2=\\|x-y\\|^2" .
"\\|x+y\\|^2=\\langle x+y,x+y\\rangle=\\langle x,x\\rangle +\\langle x,y\\rangle+\\langle y,x\\rangle +\\langle y, y\\rangle =\\|x\\|^2+\\|y\\|^2+2\\langle x,y\\rangle"
"\\|x-y\\|^2=\\langle x-y,x-y\\rangle=\\langle x,x\\rangle -\\langle x,y\\rangle-\\langle y,x\\rangle +\\langle y, y\\rangle =\\|x\\|^2+\\|y\\|^2-2\\langle x,y\\rangle"
Then we have that "0=\\|x+y\\|^2-\\|x-y\\|^2=4\\langle x,y\\rangle" .
"\\langle x,y\\rangle =0" if and only if "x\\perp y" .
Comments
Leave a comment