Let ⟨⋅ ,⋅⟩ be inner product on X .
Elements x,y∈X are such that ∥x+y∥=∥x−y∥ .
If ∥x+y∥=∥x−y∥ , then ∥x+y∥2=∥x−y∥2 .
∥x+y∥2=⟨x+y,x+y⟩=⟨x,x⟩+⟨x,y⟩+⟨y,x⟩+⟨y,y⟩=∥x∥2+∥y∥2+2⟨x,y⟩
∥x−y∥2=⟨x−y,x−y⟩=⟨x,x⟩−⟨x,y⟩−⟨y,x⟩+⟨y,y⟩=∥x∥2+∥y∥2−2⟨x,y⟩
Then we have that 0=∥x+y∥2−∥x−y∥2=4⟨x,y⟩ .
⟨x,y⟩=0 if and only if x⊥y .
Comments