Question #139494

Lex X be an inner product space over R. If x ,y X are such that ||x + y||=||x-y||then show that x  y.


1
Expert's answer
2020-10-21T16:52:46-0400

Let  ,\langle \cdot\ , \cdot\rangle be inner product on XX .

Elements x,yXx,y\in X are such that x+y=xy\|x+y\|=\|x-y\| .

If x+y=xy\|x+y\|=\|x-y\| , then x+y2=xy2\|x+y\|^2=\|x-y\|^2 .

x+y2=x+y,x+y=x,x+x,y+y,x+y,y=x2+y2+2x,y\|x+y\|^2=\langle x+y,x+y\rangle=\langle x,x\rangle +\langle x,y\rangle+\langle y,x\rangle +\langle y, y\rangle =\|x\|^2+\|y\|^2+2\langle x,y\rangle

xy2=xy,xy=x,xx,yy,x+y,y=x2+y22x,y\|x-y\|^2=\langle x-y,x-y\rangle=\langle x,x\rangle -\langle x,y\rangle-\langle y,x\rangle +\langle y, y\rangle =\|x\|^2+\|y\|^2-2\langle x,y\rangle

Then we have that 0=x+y2xy2=4x,y0=\|x+y\|^2-\|x-y\|^2=4\langle x,y\rangle .

x,y=0\langle x,y\rangle =0 if and only if xyx\perp y .


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS