Suppose that an operating room needs to handle three knee, four hip, and five shoulder surgeries.
⦁ How many different sequences are possible?
⦁ How many different sequences have all hip, knee, and shoulder surgeries scheduled consecutively?
⦁ How many different schedules begin and end with a knee surgery?
"1:\\\\\\left( 3+4+5 \\right) !=12!=4.79002\\times 10^8\\\\2:\\\\3!=6\\,\\,ways\\,\\,to\\,\\,arrange\\,\\,a\\,\\,sequence\\,\\,of\\,\\,three\\,\\,types\\\\3!=6\\,\\,to\\,\\,arrange\\,\\,a\\,\\,sequence\\,\\,of\\,\\,knee\\,\\,surgeries\\\\4!=24\\,\\,to\\,\\,arrange\\,\\,a\\,\\,sequence\\,\\,of\\,\\,hip\\,\\,surgeries\\\\5!=120\\,\\,to\\,\\,arrange\\,\\,a\\,\\,sequence\\,\\,of\\,\\,shoulder\\,\\,surgeries\\\\The\\,\\,total\\,\\,is\\,\\,\\\\6\\cdot 6\\cdot 24\\cdot 120=103680\\,\\,ways\\\\3:\\\\3\\cdot 2=6\\,\\,ways\\,\\,to\\,\\,choose\\,\\,the\\,\\,first\\,\\,and\\,\\,the\\,\\,last\\,\\,knee\\,\\,surgery\\\\\\left( 1+4+5 \\right) !=10!=3.6288\\times 10^6\\,\\,ways\\,\\,to\\,\\,arrange\\,\\,the\\,\\,rest\\,\\,surgeries\\\\The\\,\\,total\\,\\,is\\\\6\\cdot 3.6288\\times 10^6=2.17728\\times 10^7\\,\\,ways\\,\\,\\\\"
Comments
Leave a comment