Determine whether (¬q ∧ (p → q)) → ¬p) is a tautology using laws of logic.
At first, we remind that logical implication "\\rightarrow" can be rewritten via a logical disjunction. Namely, "a\\rightarrow b=\\bar{a}\\lor b" for two statements "a,b". Thus, the expression can be rewritten as:
"(\\lnot q\\land(p\\rightarrow q))\\rightarrow\\lnot p=\\lnot{(\\lnot q\\land(\\lnot p\\lor q))}\\lor\\lnot p". Remind De Morgan’s laws (they belong to laws of logic): "\\overline{a\\land b}=\\bar{a}\\lor\\bar{b}", "\\overline{a\\lor b}=\\bar{a}\\land\\bar{b}" for two statements "a,b". From them we get: "\\lnot{(\\lnot q\\land(\\lnot p\\lor q))}\\lor\\lnot p=q\\lor(\\lnot(\\lnot p\\lor q))\\lor\\lnot p=\\lnot q\\lor( p\\land \\lnot q)\\lor\\lnot p". The statement is not a tautology. Suppose that p and q are true. The expression is false in this case.
Comments
Leave a comment