Determine whether (p ∧ (p → q)) →q is a tautology using laws of logic.
At first, we remind that logical implication "\\rightarrow" can be rewritten via a logical disjunction. Namely, "a\\rightarrow b=\\bar{a}\\lor b" for two statements "a,b". Thus, the expression can be rewritten as: "(p\\land(p\\rightarrow q))\\rightarrow q=\\overline{(p\\land(\\bar{p}\\lor q))}\\lor q". Remind De Morgan’s laws (they belong to laws of logic): "\\overline{p\\land q}=\\bar{p}\\lor\\bar{q}", "\\overline{p\\lor q}=\\bar{p}\\land\\bar{q}". From them we get: "\\overline{(p\\land(\\bar{p}\\lor q))}\\lor q={(\\bar{p}\\lor\\overline{(\\bar{p}\\lor q))}}\\lor q={\\bar{p}\\lor{({p}\\land \\bar{q})}}\\lor q={\\bar{p}\\lor q\\lor{({p}\\land \\bar{q})}}". We point out that "\\overline{\\bar{p}\\lor q}={({p}\\land \\bar{q})}". Thus, we have a disjunction of the statement "\\overline{p}\\lor q" and its negation. Therefore, the expression is a tautology.
Comments
Leave a comment