Question #325559

Determine whether (p ∧ (p → q)) →q is a tautology using laws of logic.


1
Expert's answer
2022-04-08T14:13:20-0400

At first, we remind that logical implication \rightarrow can be rewritten via a logical disjunction. Namely, ab=aˉba\rightarrow b=\bar{a}\lor b for two statements a,ba,b. Thus, the expression can be rewritten as: (p(pq))q=(p(pˉq))q(p\land(p\rightarrow q))\rightarrow q=\overline{(p\land(\bar{p}\lor q))}\lor q. Remind De Morgan’s laws (they belong to laws of logic): pq=pˉqˉ\overline{p\land q}=\bar{p}\lor\bar{q}, pq=pˉqˉ\overline{p\lor q}=\bar{p}\land\bar{q}. From them we get: (p(pˉq))q=(pˉ(pˉq))q=pˉ(pqˉ)q=pˉq(pqˉ)\overline{(p\land(\bar{p}\lor q))}\lor q={(\bar{p}\lor\overline{(\bar{p}\lor q))}}\lor q={\bar{p}\lor{({p}\land \bar{q})}}\lor q={\bar{p}\lor q\lor{({p}\land \bar{q})}}. We point out that pˉq=(pqˉ)\overline{\bar{p}\lor q}={({p}\land \bar{q})}. Thus, we have a disjunction of the statement pq\overline{p}\lor q and its negation. Therefore, the expression is a tautology.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS