Answer to Question #302425 in Discrete Mathematics for Snave

Question #302425

Solve the recurrence relation A(n) = 6A(n - 1) - 11A(n - 2) + 6A(n - 3) subject to initial values A(1) = 2, A(2) = 6, A(3) = 20.

1
Expert's answer
2022-02-25T12:59:40-0500

The characteristic equation of the recurrence relation is


r36r2+11r6=0r^3 - 6r^2+ 11r-6 = 0

(r1)(r2)(r3)=0(r-1)(r-2)(r-3)=0

Hence


an=b1+b22n+b33na_n=b_1+b_22^n+b_33^n

a1=2,2=b1+2b2+3b3a_1=2, 2=b_1+2b_2+3b_3

a2=6,6=b1+4b2+9b3a_2=6, 6=b_1+4b_2+9b_3

a3=20,20=b1+8b2+27b3a_3=20, 20=b_1+8b_2+27b_3



b1+2b2+3b3=2b_1+2b_2+3b_3=2

2b2+6b3=42b_2+6b_3=4

6b2+24b3=186b_2+24b_3=18



b1+2b2+3b3=2b_1+2b_2+3b_3=2

b2=23b3b_2=2-3b_3

23b3+4b3=32-3b_3+4b_3=3

b1=1b_1=1

b2=1b_2=-1

b3=1b_3=1

The required solution is


an=12n+3na_n=1-2^n+3^n


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment