Simplify (A ∩ B) U (A ∩ B’) U (A’ ∩ B) U (A’ ∩ B’)
Let "\\bf{U}" be a universal set. Then, the distributive law for any three sets "A,B,C" is given by, "A\\cap (B \\cup C) = (A\\cap B)\\cup(A \\cap C)".
"\\begin{aligned}\n(A \u2229 B) \\cup (A \u2229 B') ~\\cup\n\\\\ (A' \u2229 B) \\cup (A' \u2229 B') &= (A \\cap (B\\cup B'))\\cup (A'\\cap (B\\cup B')) \\quad(\\text{Since $\\cup$ is associative})\\\\\n&=(A \\cap \\textbf{U})\\cup (A' \\cap \\textbf{U})\\\\&\\quad\\qquad(\\text{Union of a set and its complement is the universal set})\\\\\n& = A \\cup A' = \\textbf{U}\n\\end{aligned}"
Comments
Leave a comment