Consider a relation R=\ (1,1),(1, ), (0,2), (2,3) (3,1)) on the set A=\ 1,2,3\ Find transitive closure of the relation R using algorithm Warshall's
Let us state the steps of the Warshall's algorithm:
Step 1. Let "W:=M_R,\\ k:=0."
Step 2. Put "k:=k+1."
Step 3. For all "i\\ne k" such that "w_{ik}=1" and for all "j" let "w_{ij}=w_{ij}\\lor w_{kj}."
Step 4. If "k=n" then STOP: "W=M_{R^*}," else go to Step 2.
Consider a relation "R=\\{ (1,1),(1, 0), (0,2), (2,3), (3,1)\\}" on the set "A=\\{0, 1,2,3\\}".
Let us find transitive closure of the relation "R" using Warshall's algorithm:
"W^{(0)}=M_R\n=\\begin{pmatrix}\n0 & 0 & 1 & 0\\\\\n1 & 1 & 0 & 0\\\\\n0 & 0 & 0 & 1\\\\\n0 & 1 & 0 & 0\n\\end{pmatrix}"
"W^{(1)}\n=\\begin{pmatrix}\n0 & 0 & 1 & 0\\\\\n1 & 1 & 1 & 0\\\\\n0 & 0 & 0 & 1\\\\\n0 & 1 & 0 & 0\n\\end{pmatrix}"
"W^{(2)}\n=\\begin{pmatrix}\n0 & 0 & 1 & 0\\\\\n1 & 1 & 1 & 0\\\\\n0 & 0 & 0 & 1\\\\\n1 & 1 & 1 & 0\n\\end{pmatrix}"
"W^{(3)}\n=\\begin{pmatrix}\n0 & 0 & 1 & 1\\\\\n1 & 1 & 1 & 1\\\\\n0 & 0 & 0 & 1\\\\\n1 & 1 & 1 & 1\n\\end{pmatrix}"
"M_{R^*}=W^{(4)}\n=\\begin{pmatrix}\n1 & 1 & 1 & 1\\\\\n1 & 1 & 1 & 1\\\\\n1 & 1 & 1 & 1\\\\\n1 & 1 & 1 & 1\n\\end{pmatrix}"
It follows that "R^*=A\\times A" is a universal relation on the set "A."
Comments
Leave a comment