show that ~Q,P—>Q=>~P in mathematical foundations of computer science
Let us construct a truth table for the compound proposition "(\\sim Q\\land (P\\to Q))\\to \\sim P:"
"\\begin{array}{||c|c||c|c|c|c|c||} \n\\hline\\hline \nP & Q & P\\to Q & \\sim Q & \\sim P & \\sim Q\\land (P\\to Q) & (\\sim Q\\land (P\\to Q))\\to \\sim P \\\\ \n\\hline\\hline \n0 & 0 & 1 & 1 & 1 & 1 & 1\\\\ \n\\hline \n0 & 1 & 1 & 0 & 1 & 0 & 1 \\\\\n \\hline \n1 & 0 & 0 & 1 & 0 & 0 & 1\\\\ \n\\hline \n1 & 1 & 1 & 0 & 0 & 0 & 1\\\\ \n\\hline\\hline \n\\end{array}"
It follows that the formula "(\\sim Q\\land (P\\to Q))\\to \\sim P" is a tautology, and hence "\\sim Q, P\\to Q\\vdash\\ \\sim P."
Comments
Leave a comment