Find the sum-of-products expansions the Boolean function F(x, Y, 2) that equals 1 if and only if
a)x = 0.
b) xy = 0.
c) x +y = 0.
d)xyz = 0.
a)
"\\overline{x}(yz+\\overline{y}z+y\\overline{z}+\\overline{y}\\overline{z})=\\overline{x}yz+\\overline{x}\\overline{y}z+\\overline{x}y\\overline{z}+\\overline{x}\\overline{y}\\overline{z}"
b)
"\\overline{xy }= \\overline {x}+\\overline{y}"
then:
"\\overline{xy}z+\\overline{xy}\\overline{z}=(\\overline {x}+\\overline{y})z+(\\overline{x}+\\overline{y})\\overline{z}=\\overline{x}z+\\overline{y}z+\\overline{x}\\overline{z}+\\overline{y}\\overline{z}"
c)
"\\overline{x +y}=\\overline{x}\\cdot \\overline{y}"
then:
"\\overline{x}\\cdot \\overline{y}\\cdot z+\\overline{x}\\cdot \\overline{y}\\cdot \\overline{z}"
d)
"\\overline{xyz}=\\overline{xy}+\\overline{z}=\\overline{x}+\\overline{y}+\\overline{z}"
Comments
Leave a comment