Find matrix and digraph of the relation R=\ (x,y)/xRy iff 2+y is every defined on the set A=\ 1,2,3,4\
Assume R={(x,y)∀xRy}R=\{ (x,y) \forall xRy\}R={(x,y)∀xRy}iff x+y is every defined on the set A={1,2,3,4}A=\{1,2,3,4\}A={1,2,3,4}
R={(x,y)∀xRy}R=\{ (x,y) \forall xRy\}R={(x,y)∀xRy}, A={1,2,3,4}A=\{1,2,3,4\}A={1,2,3,4}
So, R={(1,1),(1,2),(1,3),(2,1),(2,2),(3,1)}R=\{(1,1),(1,2),(1,3),(2,1),(2,2),(3,1)\}R={(1,1),(1,2),(1,3),(2,1),(2,2),(3,1)}
Define
Mij=0;if (x,y)∈R 1;if (x,y)∉RM_{ij}=0; if\ (x,y)\in R \\ \ \ \ \ \ \ \ \ \ \ \ \ 1; if\ (x,y) \notin RMij=0;if (x,y)∈R 1;if (x,y)∈/R
So, matrix M =
Digraph:
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment