Consider a relation R = { ( 1 , 1 ) , ( 1 , 0 ) , ( 0 , 2 ) , ( 2 , 3 ) , ( 3 , 1 ) } R=\{ (1,1),(1, 0), (0,2), (2,3), (3,1)\} R = {( 1 , 1 ) , ( 1 , 0 ) , ( 0 , 2 ) , ( 2 , 3 ) , ( 3 , 1 )} on the set A = { 0 , 1 , 2 , 3 } A=\{0, 1,2,3\} A = { 0 , 1 , 2 , 3 } .
Let us find transitive closure of the relation R R R using Warshall's algorithm:
W ( 0 ) = M R = ( 0 0 1 0 1 1 0 0 0 0 0 1 0 1 0 0 ) W^{(0)}=M_R
=\begin{pmatrix}
0 & 0 & 1 & 0\\
1 & 1 & 0 & 0\\
0 & 0 & 0 & 1\\
0 & 1 & 0 & 0
\end{pmatrix} W ( 0 ) = M R = ⎝ ⎛ 0 1 0 0 0 1 0 1 1 0 0 0 0 0 1 0 ⎠ ⎞
W ( 1 ) = ( 0 0 1 0 1 1 1 0 0 0 0 1 0 1 0 0 ) W^{(1)}
=\begin{pmatrix}
0 & 0 & 1 & 0\\
1 & 1 & 1 & 0\\
0 & 0 & 0 & 1\\
0 & 1 & 0 & 0
\end{pmatrix} W ( 1 ) = ⎝ ⎛ 0 1 0 0 0 1 0 1 1 1 0 0 0 0 1 0 ⎠ ⎞
W ( 2 ) = ( 0 0 1 0 1 1 1 0 0 0 0 1 1 1 1 0 ) W^{(2)}
=\begin{pmatrix}
0 & 0 & 1 & 0\\
1 & 1 & 1 & 0\\
0 & 0 & 0 & 1\\
1 & 1 & 1 & 0
\end{pmatrix} W ( 2 ) = ⎝ ⎛ 0 1 0 1 0 1 0 1 1 1 0 1 0 0 1 0 ⎠ ⎞
W ( 3 ) = ( 0 0 1 1 1 1 1 1 0 0 0 1 1 1 1 1 ) W^{(3)}
=\begin{pmatrix}
0 & 0 & 1 & 1\\
1 & 1 & 1 & 1\\
0 & 0 & 0 & 1\\
1 & 1 & 1 & 1
\end{pmatrix} W ( 3 ) = ⎝ ⎛ 0 1 0 1 0 1 0 1 1 1 0 1 1 1 1 1 ⎠ ⎞
M R ∗ = W ( 4 ) = ( 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ) M_{R^*}=W^{(4)}
=\begin{pmatrix}
1 & 1 & 1 & 1\\
1 & 1 & 1 & 1\\
1 & 1 & 1 & 1\\
1 & 1 & 1 & 1
\end{pmatrix} M R ∗ = W ( 4 ) = ⎝ ⎛ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ⎠ ⎞
It follows that R ∗ = A × A R^*=A\times A R ∗ = A × A is a universal relation on the set A . A. A .
Comments