Show that a lattice is distributive if and only if for any elements a,b,c in thee lattice (aVb) V c< aV (bVc)
Since, given statement is unclear, we assume we need to show that:
A lattice L is distributive if and only if
"(a \\vee b) \\wedge(b \\vee c) \\wedge(c \\vee a)=(a \\wedge b) \\vee(b \\wedge c) \\vee(c \\wedge a) \\forall a, b, c \\in L" .
"\\begin{aligned}(a v b) \\wedge(b \\vee c) \\wedge(c \\vee a) &=a \\wedge[(b \\vee c) \\wedge(c \\wedge a)]\\} \\vee\\{b \\wedge[(b \\vee c) \\wedge(c \\vee a)]\\} \\\\ &=[(a \\wedge(c \\wedge a) \\wedge(b \\vee c)] \\vee[(b \\wedge(b \\vee c)) \\wedge(c \\vee a)]\\\\ &=[(a \\wedge(b \\vee c)] \\vee[b \\wedge(c \\vee a)]\\\\ &=[(a \\wedge b) \\vee(a \\wedge c)] \\vee[(b \\wedge c) \\vee(b \\wedge a)] \\\\ &=(a \\wedge b) \\vee(b \\wedge c) \\vee(c \\wedge a) \\end{aligned}"
Conversely, we first show that L is modular.
Let x, y, z be any three elements of L with "x \\leqslant z"
"\\begin{aligned} x \\vee(y \\wedge z) &=[x \\vee(x \\wedge y)] \\vee(y \\wedge z) \\text { [by absorption] } \\\\ &=(x \\wedge z) \\vee(x \\wedge y) \\vee(y \\wedge z) \\\\ &=(x \\vee y) \\wedge(y \\vee z) \\wedge(z \\vee x) \\\\ &=(x \\vee y) \\wedge[(y \\vee z) \\wedge z] \\quad[\\because x \\wedge z=x] \\\\ &=(x \\vee y) \\wedge z \\quad[\\text { by absorption property }] \\end{aligned}\n\\\\\n=(x \\vee y) \\wedge[(y \\vee z) \\wedge z] \\quad[\\because x \\leqslant z]"
"=(x \\vee y) \\wedge z \\quad" [by absorption property]
Thus, L is modular.
"\\begin{aligned}\n&\\text { Now for any } a, b, c \\in L \\\\\n&\\qquad \\begin{aligned}\na \\wedge(b \\vee c) &=[a \\wedge(a \\vee c)] \\wedge(b \\vee c) \\\\\n&[b y \\text { absorption property }] \\\\\n&=[(a \\vee b) \\wedge(b \\vee c) \\wedge(c \\vee a)] \\wedge a \\\\\n&=[(a \\wedge b) \\vee(b \\wedge c) \\vee(c \\wedge a)] \\wedge a\n\\end{aligned} \\\\\n&=[(a \\wedge b) \\vee(c \\wedge a)) \\vee(b \\wedge c)] \\wedge a \\\\\n&\\text { Since } \\\\\n&\\begin{aligned}\na \\wedge b \\leqslant a, a \\wedge c \\leqslant a & \\Rightarrow(a \\wedge b) \\vee(a \\wedge c) \\leqslant a, \\\\\n\\text { we can apply modular identity on R.H.S of }(1) \\text { to get } \\\\\na \\wedge(b \\vee c) &=[(a \\wedge b) \\vee(c \\wedge a)] \\vee[(b \\wedge c) \\wedge a] \\\\\n&=(a \\wedge b) \\vee[(c \\wedge a) \\vee(b \\wedge(c \\wedge a))] \\\\\n&=(a \\wedge b) \\vee(c \\wedge a)\n\\end{aligned} \\\\\n&\\qquad \\begin{aligned}\nL \\text { is distributive. } &[\\text { by absorption property }]\n\\end{aligned}\n\\end{aligned}" Hence, proved.
Comments
Leave a comment