Construct a truth table for each of these compound propositions.
(i) (p → q) ↔ (¬q → ¬p) (16 marks)
ii) p ⊕ (p ∨ q) (8 marks)
(i) Determine by using truth tables if (p ∧ q) → p is a tautology, contradiction or a contingency. Give reasons for your answer. (6 marks)
(ii) Show that ¬(p ⊕ q) and p ↔ q are logically equivalent. (6 marks)
Let us construct a truth table for each of these compound propositions.
(i) "(p \u2192 q) \u2194 (\u00acq \u2192 \u00acp)"
"\\begin{array}{||c|c||c|c|c|c|c||} \n\\hline\\hline \np & q & p \u2192 q & \\neg q & \\neg p & \u00acq \u2192 \u00acp & (p \u2192 q) \u2194 (\u00acq \u2192 \u00acp) \\\\ \n\\hline\\hline \n0 & 0 & 1 & 1 & 1 & 1 & 1\\\\ \n\\hline \n0 & 1 & 1 & 0 & 1 & 1 & 1 \\\\\n \\hline \n1 & 0 & 0 & 1 & 0 & 0 & 1\\\\ \n\\hline \n1 & 1 & 1 & 0 & 0 & 1 & 1\\\\ \n\\hline\\hline \n\\end{array}"
ii) "p \u2295 (p \u2228 q)"
"\\begin{array}{||c|c||c|c|c|c|c||} \n\\hline\\hline \np & q & p \u2228 q & p \u2295 (p \u2228 q) \\\\ \n\\hline\\hline \n0 & 0 & 0 & 0\\\\ \n\\hline \n0 & 1 & 1 & 1 \\\\\n \\hline \n1 & 0 & 1 & 0\\\\ \n\\hline \n1 & 1 & 1 & 0 \\\\ \n\\hline\\hline \n\\end{array}"
(i) Let us determine by using truth tables if "(p \u2227 q) \u2192 p" is a tautology, contradiction or a contingency.
"\\begin{array}{||c|c||c|c||} \n\\hline\\hline \np & q &p \u2227 q & (p \u2227 q) \u2192 p \\\\ \n\\hline\\hline \n0 & 0 & 0 & 1\\\\ \n\\hline \n0 & 1 & 0 & 1\n \\\\ \\hline \n1 & 0 & 0 & 1\\\\ \n\\hline \n1 & 1 & 1 & 1\\\\ \n\\hline\\hline \n\\end{array}"
Since the last column contains only 1, we conclude that this formula is a tautology. Therefore, this formula neither a contradiction, nor a contingency.
(ii) Let us show that "\u00ac(p \u2295 q)" and "p \u2194 q" are logically equivalent using the truth table.
"\\begin{array}{||c|c||c|c|c||} \n\\hline\\hline \np & q & p \u2295 q & \u00ac(p \u2295 q) & p \u2194 q \\\\ \n\\hline\\hline \n0 & 0 & 0 & 1 & 1\\\\ \n\\hline \n0 & 1 & 1 & 0 & 0\n \\\\ \\hline \n1 & 0 & 1 & 0 & 0\\\\ \n\\hline \n1 & 1 & 0 & 1 &1\\\\ \n\\hline\\hline \n\\end{array}"
Since the last two columns are coinside, the formulas "\u00ac(p \u2295 q)" and "p \u2194 q" are logically equivalent.
Comments
Leave a comment