Question #276633

Construct a truth table for each of these compound propositions.

(i) (p → q) ↔ (¬q → ¬p) (16 marks)

ii) p ⊕ (p ∨ q) (8 marks)


(i) Determine by using truth tables if (p ∧ q) → p is a tautology, contradiction or a contingency. Give reasons for your answer. (6 marks)

(ii) Show that ¬(p ⊕ q) and p ↔ q are logically equivalent. (6 marks)


1
Expert's answer
2021-12-08T15:49:03-0500

Let us construct a truth table for each of these compound propositions.


(i) (pq)(¬q¬p)(p → q) ↔ (¬q → ¬p)


pqpq¬q¬p¬q¬p(pq)(¬q¬p)0011111011011110010011110011\begin{array}{||c|c||c|c|c|c|c||} \hline\hline p & q & p → q & \neg q & \neg p & ¬q → ¬p & (p → q) ↔ (¬q → ¬p) \\ \hline\hline 0 & 0 & 1 & 1 & 1 & 1 & 1\\ \hline 0 & 1 & 1 & 0 & 1 & 1 & 1 \\ \hline 1 & 0 & 0 & 1 & 0 & 0 & 1\\ \hline 1 & 1 & 1 & 0 & 0 & 1 & 1\\ \hline\hline \end{array}


ii) p(pq)p ⊕ (p ∨ q)


pqpqp(pq)0000011110101110\begin{array}{||c|c||c|c|c|c|c||} \hline\hline p & q & p ∨ q & p ⊕ (p ∨ q) \\ \hline\hline 0 & 0 & 0 & 0\\ \hline 0 & 1 & 1 & 1 \\ \hline 1 & 0 & 1 & 0\\ \hline 1 & 1 & 1 & 0 \\ \hline\hline \end{array}


(i) Let us determine by using truth tables if (pq)p(p ∧ q) → p is a tautology, contradiction or a contingency.


pqpq(pq)p0001010110011111\begin{array}{||c|c||c|c||} \hline\hline p & q &p ∧ q & (p ∧ q) → p \\ \hline\hline 0 & 0 & 0 & 1\\ \hline 0 & 1 & 0 & 1 \\ \hline 1 & 0 & 0 & 1\\ \hline 1 & 1 & 1 & 1\\ \hline\hline \end{array}


Since the last column contains only 1, we conclude that this formula is a tautology. Therefore, this formula neither a contradiction, nor a contingency.


(ii) Let us show that ¬(pq)¬(p ⊕ q) and pqp ↔ q are logically equivalent using the truth table.


pqpq¬(pq)pq00011011001010011011\begin{array}{||c|c||c|c|c||} \hline\hline p & q & p ⊕ q & ¬(p ⊕ q) & p ↔ q \\ \hline\hline 0 & 0 & 0 & 1 & 1\\ \hline 0 & 1 & 1 & 0 & 0 \\ \hline 1 & 0 & 1 & 0 & 0\\ \hline 1 & 1 & 0 & 1 &1\\ \hline\hline \end{array}


Since the last two columns are coinside, the formulas ¬(pq)¬(p ⊕ q) and pqp ↔ q are logically equivalent.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS