Determine the domain of each of the following functions: 1. f(x) = x + 10 6. A(x) = x2 -2 2. F(x) = 2 3 π₯ + 5 7. H(x) = βπ₯ β 2 3. g(x) = 5 β 3x 8. K(x) = βπ₯ 2 β 2 4. g(x) = 1 (π₯+5)(π₯β1) 9. C(x) = 2x3 + 4x2 - 2x + 1 5. b(x) = π₯β1 π₯ 2+5π₯+6 10. βπ₯+1 π₯β2Β
The domain of the function(D) is the set of all values that argument might take. I will assume that x is a real number. Also the conditions is inaccurate, so i don't fully sure whether i recognized it correctly in each case, but it must be close to it
f(x) = x + 10. "D:x\\isin R"
"A(x) = x^2 -2" . "D:x\\isin R"
"F(x) = 2^{3\ud835\udc65} + 5" . "D:x\\isin R"
"H(x) = \\sqrt\ud835\udc65 \u2212 2" . The value under the square root must be non-negative, so "D:x\\isin [0,+\\infty)"
g(x) = 5 β 3x . "D:x\\isin R"
"K(x) = \\sqrt{x^2 \u2212 2}" . "D:x^2-2\u22650\\implies x^2\u22652\\implies D:x\\isin (-\\infty,-\\sqrt2)\\cup(\\sqrt2,+\\infty)"
"g(x) = {\\frac 1 {(\ud835\udc65+5)(\ud835\udc65\u22121)}}" . Cannot divide by 0, so "D:(x+5)(x-1)\\not=0\\implies D:x\\in R" \ {-5, 1}
"C(x) = 2x^3 + 4x^2 - 2x + 1" . "D:x\\isin R"
"b(x) = \ud835\udc65\u2212{\\frac 1 {x^2+5x+6}}" . "D:x^2+5x+6\\not=0\\implies D:x\\in R" \ {-3, -2}
"f(x)={\\frac {\\sqrt{x-1}} {x-2}}" . "D:(x-1\u22650)\\land (x-2\\not=0)\\implies D:x\\isin [1,+\\infty)" \ {2}
Comments
Leave a comment