Question #276432

Determine the domain of each of the following functions: 1. f(x) = x + 10 6. A(x) = x2 -2 2. F(x) = 2 3 π‘₯ + 5 7. H(x) = √π‘₯ βˆ’ 2 3. g(x) = 5 – 3x 8. K(x) = √π‘₯ 2 βˆ’ 2 4. g(x) = 1 (π‘₯+5)(π‘₯βˆ’1) 9. C(x) = 2x3 + 4x2 - 2x + 1 5. b(x) = π‘₯βˆ’1 π‘₯ 2+5π‘₯+6 10. √π‘₯+1 π‘₯βˆ’2 


1
Expert's answer
2021-12-09T16:38:20-0500

The domain of the function(D) is the set of all values that argument might take. I will assume that x is a real number. Also the conditions is inaccurate, so i don't fully sure whether i recognized it correctly in each case, but it must be close to it

f(x) = x + 10. D:x∈RD:x\isin R


A(x)=x2βˆ’2A(x) = x^2 -2 . D:x∈RD:x\isin R


F(x)=23π‘₯+5F(x) = 2^{3π‘₯} + 5 . D:x∈RD:x\isin R


H(x)=π‘₯βˆ’2H(x) = \sqrtπ‘₯ βˆ’ 2 . The value under the square root must be non-negative, so D:x∈[0,+∞)D:x\isin [0,+\infty)


g(x) = 5 – 3x . D:x∈RD:x\isin R


K(x)=x2βˆ’2K(x) = \sqrt{x^2 βˆ’ 2} . D:x2βˆ’2β‰₯0β€…β€ŠβŸΉβ€…β€Šx2β‰₯2β€…β€ŠβŸΉβ€…β€ŠD:x∈(βˆ’βˆž,βˆ’2)βˆͺ(2,+∞)D:x^2-2β‰₯0\implies x^2β‰₯2\implies D:x\isin (-\infty,-\sqrt2)\cup(\sqrt2,+\infty)


g(x)=1(π‘₯+5)(π‘₯βˆ’1)g(x) = {\frac 1 {(π‘₯+5)(π‘₯βˆ’1)}} . Cannot divide by 0, so D:(x+5)(xβˆ’1)=ΜΈ0β€…β€ŠβŸΉβ€…β€ŠD:x∈RD:(x+5)(x-1)\not=0\implies D:x\in R \ {-5, 1}


C(x)=2x3+4x2βˆ’2x+1C(x) = 2x^3 + 4x^2 - 2x + 1 . D:x∈RD:x\isin R


b(x)=π‘₯βˆ’1x2+5x+6b(x) = π‘₯βˆ’{\frac 1 {x^2+5x+6}} . D:x2+5x+6=ΜΈ0β€…β€ŠβŸΉβ€…β€ŠD:x∈RD:x^2+5x+6\not=0\implies D:x\in R \ {-3, -2}


f(x)=xβˆ’1xβˆ’2f(x)={\frac {\sqrt{x-1}} {x-2}} . D:(xβˆ’1β‰₯0)∧(xβˆ’2=ΜΈ0)β€…β€ŠβŸΉβ€…β€ŠD:x∈[1,+∞)D:(x-1β‰₯0)\land (x-2\not=0)\implies D:x\isin [1,+\infty) \ {2}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS