Let f : A → B be a function.
1. Show that for the identity function iA on A we have f ◦ iA = f.
2. Show that for the identity function iB on B we have iB ◦ f = f.
"f:\\ A\\rightarrow B"
1. "\\forall a \\in A:\\quad (f\\circ I_A)(a)=f\\big(I_A(a)\\big)"
Since "a\\in A" , it follows that "I_A(a)=a" and "(f\\circ I_A)(a)=f\\big(I_A(a)\\big)=f(a)"
So, "f\\circ I_A=f" .
2. "\\forall a \\in A:\\quad (I_B\\circ f)(a)=I_B\\big(f(a)\\big)"
Since "f(a)\\in B" , it follows that "I_B\\big(f(a)\\big)=f(a)" and "(I_B\\circ f)(a)=f(a)"
So, "I_B\\circ f=f" .
Comments
Leave a comment