Question #275674

∑j=08​(j8​)(j+1)(j+2)

1
Expert's answer
2021-12-06T12:19:55-0500
j=08(8j)1(j+1)(j+2)=11(0+1)(0+2)\displaystyle\sum_{j=0}^{8}\dbinom{8}{j}\dfrac{1}{(j+1)(j+2)}=1\cdot\dfrac{1}{(0+1)(0+2)}

+81(1+1)(1+2)+281(2+1)(2+2)+8\cdot\dfrac{1}{(1+1)(1+2)}+28\cdot\dfrac{1}{(2+1)(2+2)}

+561(3+1)(3+2)+701(4+1)(4+2)+56\cdot\dfrac{1}{(3+1)(3+2)}+70\cdot\dfrac{1}{(4+1)(4+2)}

+561(5+1)(5+2)+281(6+1)(6+2)+56\cdot\dfrac{1}{(5+1)(5+2)}+28\cdot\dfrac{1}{(6+1)(6+2)}+81(7+1)(7+2)+11(8+1)(8+2)+8\cdot\dfrac{1}{(7+1)(7+2)}+1\cdot\dfrac{1}{(8+1)(8+2)}

=101390=\dfrac{1013}{90}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS