Question #275764

Find the solution of the recurrence relation an = 4an−1 − 3an−2 + 2^n + n + 3 with


a^0 = 1 and a^1 = 4.

1
Expert's answer
2021-12-06T12:04:38-0500

Let us find the solution of the recurrence relation an=4an13an2+2n+n+3a_n = 4a_{n−1} − 3a_{n−2} + 2^n + n + 3 with

a0=1a_0 = 1 and a1=4.a_1 = 4.

The characteristic equation k24k+3=0k^2-4k+3=0 of the homogeous recurrence relation an4an1+3an2=0a_n -4a_{n−1} + 3a_{n−2}=0 is equivalent to (k1)(k3)=0,(k-1)(k-3)=0, and hence has the solutions k1=1k_1=1

and k2=3.k_2=3. Therefore, the general solution of the relation an=4an13an2+2n+n+3a_n = 4a_{n−1} − 3a_{n−2} + 2^n + n + 3 is of the form an=c1+c23n+bnp,a_n=c_1+c_23^n+b_n^p, where bnp=a2n+n(bn+c)=a2n+bn2+cn.b_n^p=a2^n+n(bn+c)=a2^n+bn^2+cn.

It follows that

a2n+bn2+cna2^n+bn^2+cn

=4(a2n1+b(n1)2+c(n1))3(a2n2+b(n2)2+c(n2))+2n+n+3=4(a2^{n-1}+b(n-1)^2+c(n-1))-3(a2^{n-2}+b(n-2)^2+c(n-2))+2^n+n+3

=4a2n1+4b(n22n+1)+4c(n1)3a2n23b(n24n+4)3c(n2)+2n+n+3=4a2^{n-1}+4b(n^2-2n+1)+4c(n-1)-3a2^{n-2}-3b(n^2-4n+4)-3c(n-2)+2^n+n+3

=4a2n13a2n2+2n+bn2+(4b+c+1)n+(8b+2c+3)=4a2^{n-1}-3a2^{n-2}+2^n+bn^2+(4b+c+1)n+(-8b+2c+3)

=(5a+4)2n2+bn2+(4b+c+1)n+(8b+2c+3).=(5a+4)2^{n-2}+bn^2+(4b+c+1)n+(-8b+2c+3).

It follows that 4a=5a+4, c=4b+c+14a=5a+4,\ c=4b+c+1 and 8b+2c+3=0.-8b+2c+3=0.

Therefore, a=4, b=14, c=12(8b3)=12(23)=52.a=-4,\ b=-\frac{1}4,\ c=\frac{1}2(8b-3)=\frac{1}2(-2-3)=-\frac{5}2.

We conclude that the general solution of the relation an=4an13an2+2n+n+3a_n = 4a_{n−1} − 3a_{n−2} + 2^n + n + 3 is of the form an=c1+c23n42n14n252n.a_n=c_1+c_23^n-4\cdot2^n-\frac{1}4n^2-\frac{5}2n.

Since a0=1a_0 = 1 and a1=4,a_1 = 4, we get

1=a0=c1+c241=a_0=c_1+c_2-4 and 4=a1=c1+3c281452=c1+3c2434.4=a_1=c_1+3c_2-8-\frac{1}4-\frac{5}2=c_1+3c_2-\frac{43}4.

Therefore, c1+c2=5c_1+c_2=5 and c1+3c2=594.c_1+3c_2=\frac{59}4. It follows that c2=398c_2=\frac{39}8 and c1=18.c_1=\frac{1}8.


Consequently, the general solution of the relation an=4an13an2+2n+n+3a_n = 4a_{n−1} − 3a_{n−2} + 2^n + n + 3 is the following:

an=398+183n2n+214n252n.a_n=\frac{39}8+\frac{1}83^n-2^{n+2}-\frac{1}4n^2-\frac{5}2n.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS