Show that whether x5 + 10x3 + x + 1 is O(x4) or not?
Solution:
"\\dfrac{x^5+10x^3+x+1}{x^4}= \\dfrac{x^5}{x^4}+\\dfrac{10x^3}{x^4}+\\dfrac{x}{x^4}+\\dfrac{1}{x^4}=x+\\dfrac{10}{x}+\\dfrac{1}{x^3}+\\dfrac{1}{x^4}"
"\\implies x+10x^{-1}+x^{-3}+x^{-4}"
Degree of polynomial = 1
So, it is not "O(x^4)"
Comments
Leave a comment