Prove the identity laws in Table 1 by showing that a) A U 0 A. b) A n U = A.
Solution:
(a) Assume "U=\\{1,2,3,4,5,6\\}, A=\\{1,2,3\\}"
To prove "A\\cup \\phi=A"
"LHS=A\\cup \\phi\n\\\\=\\{1,2,3\\} \\cup \\phi\n\\\\=\\{1,2,3\\}\n\\\\=A=RHS"
(b)
To prove "A\\cap U=A"
"LHS=A\\cap U\n\\\\=\\{1,2,3\\}A\\cap \\{1,2,3,4,5,6\\}\n\\\\=\\{1,2,3\\}\n\\\\=A=RHS"
Hence, proved.
Comments
Leave a comment