p ^ ~ (q ^ r)
Let us construct the trush table for the formula p∧∼(q∧r):p \land \sim (q \land r):p∧∼(q∧r):
pqrq∧r∼(q∧r)p∧∼(q∧r)000010001010010010011100100011101011110011111100\begin{array}{||c|c|c||c|c|c||} \hline\hline p & q & r & q \land r & \sim(q \land r) &p \land \sim (q \land r)\\ \hline\hline 0 & 0 & 0 & 0 & 1 & 0\\ \hline 0 & 0 & 1 & 0 & 1 & 0\\ \hline 0 & 1 & 0 & 0 & 1 & 0\\ \hline 0 & 1 & 1 & 1 & 0 & 0\\ \hline 1 & 0 & 0 & 0 & 1 & 1\\ \hline 1 & 0 & 1 & 0 & 1 & 1\\ \hline 1 & 1 & 0 & 0 & 1 & 1\\ \hline 1 & 1 & 1 & 1 & 0 &0\\ \hline\hline \end{array}p00001111q00110011r01010101q∧r00010001∼(q∧r)11101110p∧∼(q∧r)00001110
We conclude that this formula is neither tautology nor contradiction.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments