Question #261359

1.Determine for which integer values of n, 3n^3+2≤n^4 and prove your claim by mathematical induction.

2.


1
Expert's answer
2021-11-07T17:41:16-0500

Let us prove that 3n3+2n43n^3+2≤n^4 for all integers n4.n\ge4.


If n=4,n=4, then 343+2=194<256=44.3\cdot 4^3+2=194<256=4^4.


Suppose that 3k3+2k4,3k^3+2≤k^4, where k4,k\ge 4, and prove the statement for k+1.k+1.


Since k4,k\ge 4, we get that 2k8,2k\ge 8, and hence 2k17.2k-1\ge 7. Then (2k1)249,(2k-1)^2\ge 49, that is 4k24k+149.4k^2-4k+1\ge 49. Therefore, 4k24k+48.4k^2\ge4k+48.

It follows that

9k2+9k+1=(3k2+5k)+(6k2+4k+1)=(3k+5)k+(6k2+4k+1)(4k+48)k+(6k2+4k+1)4k2k+(6k2+4k+1)=4k3+6k2+4k+1.9k^2+9k+1=(3k^2+5k)+(6k^2+4k+1) =(3k+5)k+(6k^2+4k+1)\\ \le (4k+48)k+(6k^2+4k+1)\le 4k^2k+(6k^2+4k+1)=4k^3+6k^2+4k+1.


Consequently,

3(k+1)3+2=3k3+9k2+9k+3=(3k3+2)+(9k2+9k+1)k4+4k3+6k2+4k+1=(k+1)4.3(k+1)^3+2=3k^3+9k^2+9k+3=(3k^3+2)+(9k^2+9k+1)\\ \le k^4+4k^3+6k^2+4k+1=(k+1)^4.

According to mathematical induction principle, the statement 3n3+2n43n^3+2≤n^4 is true for all integers n4.n\ge4.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS