Question #261238

Find the inverse of 35 modulo 11 by using extended Euclidean Algorithm



step by step solution

1
Expert's answer
2021-11-09T11:00:11-0500

35=3×11+2...(1)11=5×2+1...(2)2=2×1+035=3\times11+2...(1)\\ 11=5\times2+1...(2)\\ 2=2\times1+0\\

Now,

1=115×2 From (2)1=115×(353×11) From (1)1=115×35+15×111=5×35+16×111(mod 11)=6×35+16×111(mod 11)=6×351=11-5\times2\ \text{From (2)}\\ 1= 11-5\times (35-3\times11) \ \text{From (1)}\\ 1= 11-5\times35+15\times11\\ 1=-5\times35+16\times11\\ 1(\text{mod 11})=6\times35+16\times11\\ 1(\text{mod 11})=6\times35

6351mod 116\equiv 35^{-1} \text{mod 11}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS