Find the inverse of 35 modulo 11 by using extended Euclidean Algorithm
step by step solution
35=3×11+2...(1)11=5×2+1...(2)2=2×1+035=3\times11+2...(1)\\ 11=5\times2+1...(2)\\ 2=2\times1+0\\35=3×11+2...(1)11=5×2+1...(2)2=2×1+0
Now,
1=11−5×2 From (2)1=11−5×(35−3×11) From (1)1=11−5×35+15×111=−5×35+16×111(mod 11)=6×35+16×111(mod 11)=6×351=11-5\times2\ \text{From (2)}\\ 1= 11-5\times (35-3\times11) \ \text{From (1)}\\ 1= 11-5\times35+15\times11\\ 1=-5\times35+16\times11\\ 1(\text{mod 11})=6\times35+16\times11\\ 1(\text{mod 11})=6\times351=11−5×2 From (2)1=11−5×(35−3×11) From (1)1=11−5×35+15×111=−5×35+16×111(mod 11)=6×35+16×111(mod 11)=6×35
6≡35−1mod 116\equiv 35^{-1} \text{mod 11}6≡35−1mod 11
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments