State and prove Pascal’s identity using the formula for "{n \\choose k}"
Pascal's identity states that "{n \\choose k} = {n-1 \\choose k-1}+{n-1 \\choose k}", where "{n \\choose k}={\\frac{n!} {(n-k)!*k!}}"
"{n-1 \\choose k-1}+{n-1 \\choose k}= {\\frac{(n-1)!} {(n-1-k+1)!*(k-1)!}}+{\\frac{(n-1)!} {(n-1-k)!*k!}}={\\frac{(n-1)!} {(n-k)!*(k-1)!}}+{\\frac{(n-1)!} {(n-k-1)!*k!}}={\\frac{k*(n-1)!+(n-k)*(n-1)!} {(n-k)!*k!}}={\\frac{k*(n-1)!+n*(n-1)!-k*(n-1)!} {(n-k)!*k!}}={\\frac{n!} {(n-k)!*k!}}"
The statement has been proven
Comments
Leave a comment