Pascal's identity states that (kn)=(k−1n−1)+(kn−1), where (kn)=(n−k)!∗k!n!
(k−1n−1)+(kn−1)=(n−1−k+1)!∗(k−1)!(n−1)!+(n−1−k)!∗k!(n−1)!=(n−k)!∗(k−1)!(n−1)!+(n−k−1)!∗k!(n−1)!=(n−k)!∗k!k∗(n−1)!+(n−k)∗(n−1)!=(n−k)!∗k!k∗(n−1)!+n∗(n−1)!−k∗(n−1)!=(n−k)!∗k!n!
The statement has been proven
Comments