Question #261237

Find the inverse of 55 modulo 7 by using extended Euclidean Algorithm



step by step solution

1
Expert's answer
2021-11-08T12:07:23-0500

Apply Euclidean Algorithm to compute GCD as shown in the left column.

It will verify that GCD(55,7)=1.GCD(55, 7)=1.

Then we will solve for the remainders in the right column.


55=7(7)+66=557(7)7=6(1)+11=76(1)6=1(6)+0\def\arraystretch{1.5} \begin{array}{c:c} 55=7(7)+6 & 6=55-7(7) \\ 7=6(1)+1 & 1=7-6(1) \\ 6=1(6)+0 & \end{array}

Use the equations in the right side and perform reverse operation as:


1=76(1)                  1=7[557(7)](1)1=7(8)+55(1)   \begin{matrix} 1=7-6(1)\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \\ \ \ \ 1=7-[55-7(7)](1)\\ \\ 1=7(8)+55(-1)\ \ \ \end{matrix}

Therefore 1=55(1)mod7,1=55(-1)\mod {7}, or of we prefer a residue value for multiplicative inverse


1=55(6)mod7.1=55(6)\mod {7}.

Therefore, 77 is the multiplicative inverse of 55.55.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS