Use a truth table to verify this De Morgan’s law:
¬(p ∧ q) ≡ ¬p ∨ ¬q
Let us use a truth table to verify this De Morgan’s law:
"\u00ac(p \u2227 q) \u2261 \u00acp \u2228 \u00acq."
We have the following trush table:
"\\begin{array}{||c|c||c|c|c|c|c||}\n\\hline\\hline\np & q & p\\land q & \\neg p & \\neg q & \\neg(p\\land q) & \\neg p\\lor\\neg q\\\\\n\\hline\\hline\nF & F & F & T & T & T & T \\\\\n\\hline\nF & T & F & T & F & T & T \\\\\n\\hline\nT & F & F & F & T & T & T\\\\\n\\hline\nT & T & T & F & F & F & F \\\\\n\\hline\\hline\n\\end{array}"
Since the last two columns are coinside, we conclude that the De Morgan’s law is indeed true.
Comments
Leave a comment