Show that C (n+1, k) = C (n, k -1) + C (n, k)
"C(n,k-1)=\\dbinom{n}{k-1}=\\dfrac{n!}{(k-1)!(n-k+1)!}"
"C(n,k)=\\dbinom{n}{k}=\\dfrac{n!}{k!(n-k)!}"
Then
"=\\dfrac{n!}{(k-1)!(n-k+1)!}+\\dfrac{n!}{k!(n-k)!}"
"=\\dfrac{n!(k+n-k+1)}{k!(n-k+1)!}=\\dfrac{n!(n+1)}{k!(n-k+1)!}"
"=\\dfrac{(n+1)!}{k!(n+1-k)!}=C(n+1,k)"
Comments
Leave a comment