Let MRÂ denotes the matrix representation of R. Take W0=MR, we have
"W_0=M_R=\\begin{pmatrix} 0 & 0 & 1 & 0 \\\\ 0 & 0 & 1 & 1 \\\\ 1 & 0 & 0 & 0 \\\\ 0 & 1 & 0 & 0 \\\\ \\end{pmatrix}."
As WRÂ is 4x4 matrix, we have n=4 and we need to compute W4.
For k=1. In column 1 of W0Â '1' is at position 3, hence p1=3.
In row 1 of W0Â 1's is at position 1, hence q1=3.
Thus, we put 1 at position (p1, q1)=(3, 3).
"W_1=\n\\begin{pmatrix}\n 0 & 0 & 1 & 0 \\\\\n 0 & 0 & 1 & 1 \\\\\n 1 & 0 & 1 & 0 \\\\\n 0 & 1 & 0 & 0 \\\\\n \\end{pmatrix}."
For k=2. In column 2 of W1Â '1' is at position 4, hence p1=4.
In row 2 of W1Â 1's are at positions 3 and 4, hence q1=3, q2=4.
Thus, we put 1 at positions (p1, q1)=(4, 3) and (p1, q2)=(4, 4).
"W_2=\n\\begin{pmatrix}\n 0 & 0 & 1 & 0 \\\\\n 0 & 0 & 1 & 1 \\\\\n 1 & 0 & 1 & 0 \\\\\n 0 & 1 & 1 & 1 \\\\\n \\end{pmatrix}."
For k=3. In column 3 of W2Â '1' are at positions 1, 2, 3 and 4, hence p1=1, p2=2, p3=3, p4=4.
In row 3 of W2Â 1's are at positions 1 and 3, hence q1=1, q2=3.
Thus, we put 1 at positions (p1, q1)=(1, 1), (p1, q2)=(1, 3), (p2, q1)=(2, 1), (p2, q2)=(2, 3),
(p3, q1)=(3, 1), (p3, q2)=(3, 3), (p4, q1)=(4, 1), (p4, q2)=(4, 3).
"W_3=\n\\begin{pmatrix}\n 1 & 0 & 1 & 0 \\\\\n 1 & 0 & 1 & 1 \\\\\n 1 & 0 & 1 & 0 \\\\\n 1 & 1 & 1 & 1 \\\\\n \\end{pmatrix}."
For k=4. In column 4 of W3Â '1' are at positions 2 and 4, hence p1=2, p2=4.
In row 4 of W3Â 1's are at positions 1, 2, 3 and 4, hence q1=1, q2=2, q3=3, q4=4.
Thus, we put 1 at positions (p1, q1)=(2, 1), (p1, q2)=(2, 2), (p1, q3)=(2, 3), (p1, q4)=(2, 4),
(p2, q1)=(4, 1), (p2, q2)=(4, 2), (p2, q3)=(4, 3), (p2, q4)=(4, 4).
"M_R^{\\infty}=W_4=\n\\begin{pmatrix} \n1 & 0 & 1 & 0 \\\\ \n1 & 1 & 1 & 1 \\\\ \n1 & 0 & 1 & 0 \\\\ \n1 & 1 & 1 & 1 \\\\ \n\\end{pmatrix}."
Thus, the transitive closure of R is given as .
"R^{\\infty}=\\{(1,1),(1,3),(2,1),(2,2),(2,3),(2,4),(3,1),(3,3),(4,1),(4,2),(4,3),(4,4)\\}."Â .
Comments
Leave a comment