Prove that
n*P( n -1,n - 1) = P (n, n)
"P(n,k) = {\\frac{n!} {(n-k)!}}"
"P(n,n) = {\\frac {n!} {(n-n)!}} = n!"
The point is to prove that "n*P(n-1,n-1) = n!"
"n*P(n-1,n-1) = n*{\\frac {(n-1)!} {((n-1)-(n-1))!}}=n*(n-1)!=n!"
The statement has been proven
Comments
Leave a comment