Prove that
n*P( n -1,n - 1) = P (n, n)
P(n,k)=n!(n−k)!P(n,k) = {\frac{n!} {(n-k)!}}P(n,k)=(n−k)!n!
P(n,n)=n!(n−n)!=n!P(n,n) = {\frac {n!} {(n-n)!}} = n!P(n,n)=(n−n)!n!=n!
The point is to prove that n∗P(n−1,n−1)=n!n*P(n-1,n-1) = n!n∗P(n−1,n−1)=n!
n∗P(n−1,n−1)=n∗(n−1)!((n−1)−(n−1))!=n∗(n−1)!=n!n*P(n-1,n-1) = n*{\frac {(n-1)!} {((n-1)-(n-1))!}}=n*(n-1)!=n!n∗P(n−1,n−1)=n∗((n−1)−(n−1))!(n−1)!=n∗(n−1)!=n!
The statement has been proven
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment