Question #253732

Q#1 For any sets 𝐴, 𝐵 and 𝐶, if 𝐴 ⊆ 𝐵, then 𝐴 ∩ 𝐶 ⊆ 𝐵 ∩ 𝐶.

Q#2 For any sets 𝐴, 𝐵 and 𝐶,

(𝐴 × 𝐶) ∩ (𝐵 × 𝐷) = (𝐴 ∩ 𝐵) × (𝐶 ∩ 𝐷).

Q#3 Given sets 𝐴, 𝐵 and 𝐶, prove that

𝐴 × (𝐵 ∩ 𝐶) = (𝐴 × 𝐵) ∩ (𝐴 × 𝐶)

Q#4 Prove that If 𝐴 and 𝐵 are sets, then 𝒫(𝐴)⋃𝒫(𝐵) ⊆ 𝒫(𝐴⋃𝐵).

Q#5 Suppose 𝐴 and 𝐵 are sets.

If 𝒫(𝐴) ⊆ 𝒫(𝐵),𝑡ℎ𝑒𝑛 𝐴 ⊆ 𝐵.


1
Expert's answer
2021-10-21T13:26:15-0400

Q#1.

Let xACx\in A\cap C

Case 1,

Since AB,xA    xBA\sube B, x\in A\implies x\in B

xB    xBCx\in B\implies x\in B\cap C

Case 2,

xCx\in C

xC    xBCx\in C\implies x\in B\cap C since xBx\in B

Thus, in either cases, xAC    xBC.x\in A\cap C\implies x\in B\cap C.

So,

x(xAC    xBC)\forall x(x\in A\cap C\implies x\in B\cap C)

We now have that,

ACBCA\cap C\sube B\cap C .\blacksquare.


Q#2.

Let (x,y)(AB)×(CD)(x,y)\in(A\cap B)\times(C\cap D)

    x(AB)×(CD)×y\iff x\in (A\cap B)\times(C\cap D)\times y

    xAByCD\iff x\in A\cap B\land y\in C\cap D

    xAxByCyD\iff x\in A\land x\in B\land y\in C\land y\in D

    x(A×C)yx(B×D)y\iff x(A\times C)y\land x(B\times D)y

    x(A×C)(B×D)y\iff x(A\times C)\cap(B\times D)y

Therefore,

(AB)×(CD)=(A×C)(B×D)(A\cap B)\times(C\cap D)=(A\times C )\cap (B\times D) as required \blacksquare .


Q#3.

To begin with, we will first show that A×(BC)(A×B)(A×C)A\times (B\cap C)\sube (A\times B)\cap(A\times C ). Suppose (x,y)A×(BC)(x,y)\in A\times(B\cap C). This means that, xAx\in A and yBCy\in B\cap C by definition of Cartesian product. By definition of intersection, it follows that yBy\in B and yCy\in C.Since xAx\in A and yBy\in B, it follows that (x,y)A×B(x,y)\in A\times B by definition of Cartesian product. Also, since xAx\in A and yCy\in C it follows that (x,y)A×C(x,y)\in A\times C by definition of ×\times. Now, we have (x,y)A×B(x,y)\in A\times B and (x,y)A×C(x,y)\in A\times C and so, (x,y)(A×B)(A×C)(x,y)\in (A\times B)\cap(A\times C). Having shown that (x,y)A×(BC)    (x,y)(A×B)(A×C)(x,y)\in A\times(B\cap C)\implies (x,y)\in (A\times B)\cap(A\times C), we have, A×(BC)(A×B)(A×C)A\times(B\cap C)\sube(A\times B)\cap(A\times C).

Next, we show that (A×B)(A×C)A×(BC)(A\times B)\cap(A\times C)\sube A \times(B\cap C),

Suppose (x,y)(A×B)(A×C)(x,y)\in (A\times B)\cap(A\times C). By definition of intersection, it means that, (x,y)A×B(x,y)\in A\times B and (x,y)A×C(x,y)\in A\times C. By definition of Cartesian product, (x,y)A×B(x,y)\in A\times B means xAx\in A and yBy\in B also, (x,y)A×C(x,y)\in A\times C means xAx\in A and yCy\in C. We have that, yBy\in B and yCy\in C so, yBCy\in B\cap C by definition of intersection. Thus, we have deduced that xAx\in A and yBCy\in B\cap C, so (x,y)A×(BC)(x,y)\in A\times (B\cap C). Hence,

(A×B)(A×C)A×(BC)(A\times B)\cap(A\times C)\sube A\times (B\cap C).

In summary, we have shown that A×(BC)(A×B)(A×C)A\times (B\cap C)\sube (A\times B)\cap(A\times C) and (A×B)(A×C)A×(BC)(A\times B)\cap(A\times C)\sube A\times (B\cap C). It follows that, A×(BC)=(A×B)(A×C)A\times(B\cap C)=(A\times B)\cap(A\times C) as required.\blacksquare.


Q#4.

Suppose xp(A)p(B)x\in \mathcal{p}(A)\cup \mathcal{p}(B),

Then, xp(A) or xp(B)x\in\mathcal{p}(A) \space or\space x\isin\mathcal{p}(B)

Hence,

xA or xBx\sube A\space or\space x\sube B

We need to show that xp(AB),x\in\mathcal{p}( A\cup B), that is, we need to show that xABx\sube A\cup B

Suppose yxy\in x then, yA or yBy\in A\space or\space y\in B since xA or xBx\sube A \space or \space x\sube B

Thus, yx    y(AB)y\in x\implies y\in (A\cup B) and so, x(AB)x\sube (A\cup B).

Hence,

xp(AB)x\in\mathcal {p}(A\cup B)

xp(A)p(B)    xp(AB)\therefore x\in \mathcal{p}(A)\cup \mathcal{p}(B)\implies x\in\mathcal {p}(A\cup B)

and so,

p(A)p(B)p(AB)\mathcal{p}(A)\cup\mathcal{p}(B)\sube \mathcal{p}(A\cup B) as required \blacksquare .


Q#5.

Suppose that AA and BB are sets and p(A)p)(B)\mathcal p(A)\sube\mathcal {p})(B)

By definition of a power set, Ap(A)A\sube \mathcal {p}(A).Since Ap(A)A\in \mathcal{p}(A) and p(A)p(B)\mathcal{p}(A)\sube \mathcal{p}(B), we know that Ap(B)A\in \mathcal{p}(B) by definition of subset.

So, by definition of power set, ABA\sube B \blacksquare.




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS