Question#1
Use algebra of sets to prove the following:
i. (π΅ β π΄) βͺ (πΆ β π΄) = (π΅ βͺ πΆ) β π΄
ii. [(π΅ β π΄) cβ© π΄] β π΄c= π΄
iii. (π΄π βͺ π΅)c β© Ac= β
Question#2
Use Mathematical induction to prove the following generalization of one
of De Morganβs law: βnj=1 π΄j= βnj=1 Aj
Question#3
Prove that (π΄ βͺ π΅ βͺ πΆ) β² = π΄β² β© π΅ β² β© πΆ β²
i.Β "(B\\cup C)-A=(B\\cap C)\\cap \\overline {A}=[distribution\\space low]="
"(B\\cap \\overline {A})\\cup(C\\cap \\overline{A})=(B-A)\\cup(C-A)"
iiΒ
"[(B-A)^c\\cap A]-A^c=[(B\\cap A^c)^c\\cap A]\\cap (A^c)^c=[Morgan \\space low, double \\space complement \\space low]=(B^c\\cup(A^c)^c)\\cap A)\\cap A=(B^c\\cup A)\\cap(A\\cap A)=[idempotent \\space law]=(B^c\\cup A)\\cap A=A.\\space \nbecause A\\subset (B^c\\cup A)"
iii.
"(A^c\\cup B)^c\\cap A^c=[Morgan\\space low]=((A^c)^c\\cap B^c\\cap A^c=[double\\space complement]=A\\cap B^c\\cap A^c=[commutativity\\space and \\space associativity \\space of \\space \\cap]=(A\\cap A^c)\\cap B=[properties \\space of\\space complement]=\\empty\\cap B=\\empty"
Question 2/
1) Basis of induction, n=2
"\\left(\\bigcup_{j=1}^{2}A_j\\right)^c=(A_1\\cup A_2)^c=[Morgan\\space law]=A_1^c\\cap A_2^c=\\bigcap_{j=1}^{2}A_j^c"
2) Induction step, let the statement is true for n=k, i.e.
"\\left(\\bigcup_{j=1}^{k}A_j\\right)^c=" "\\bigcap_{j=1}^{k}A_j^c"
Considerthe case n=k+1:
"\\left(\\bigcup_{j=1}^{k+1}A_j\\right)^c=\\left(\\bigcup_{j=1}^{k}A_j\\cup A_{k+1}\\right)^c=[Morgan\\space law]="
"\\left(\\bigcup_{j=1}^{k}A_j\\right)^c\\cap A_{k+1}^c=[induction\\space hypothesis]" ="\\bigcap_{j=1}^{k}A_j^c\\cap A_{k+1}^c=\\bigcap_{j=1}^{k+1}A_j^c" , so statement is true for n=k+1, induction step is verified, therefore the statement is proved by math inductionmethod.
Question 3.
"Let \\space A_1=A,A_2=B,A_3=C"
Then "(A\\cup B\\cup C)^c=" "\\left(\\bigcup_{j=1}^{3}A_j\\right)^c=[Question\\space 2]=" "\\bigcap_{j=1}^{3}A_j^c=(A_1\\ \\cap A_3)=A\\cap B\\cap C"
Comments
Leave a comment