Answer to Question #234555 in Discrete Mathematics for Reddy mounika

Question #234555
Define a bijective function. Explain with reasons whether the following functions are bijective or not. Find also the inverse of each of the functions.
i. f(x) = 4x+2, A=set of real numbers
ii. f(x) = 3+ 1/x, A=set of non zero real numbers
iii. f(x) = (2x+3) mod7, A=N7
1
Expert's answer
2021-09-14T06:15:07-0400

Afunctionf:AB is bijective(or f is a bijection) ifeach bB has exactly one preimage.A function f: A→B \space is \space bijective (or \space f \space is \space a \space bijection) \space if each \space b∈B \space has \space exactly \space one \space preimage.

i)

f(x)=4x+2For any set A,the identity function A is a bijectionf(x) = 4x+2\\ For \space any \space set \space A, the \space identity \space function \space A \space is \space a \space bijection

ii)

f(x)=3+1xFor any set A,the identity function A is a bijectionf(x) = \frac{3+ 1}{x}\\ For \space any \space set \space A, the \space identity \space function \space A \space is \space a \space bijection

iii)

f(x)=(2x+3)mod7For any set A,the identity function A is not a bijectionf(x) = (2x+3) mod7\\ For \space any \space set \space A, the \space identity \space function \space A \space is \space not \space a \space bijection


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment