Show that ¬ (P"\\iff"Q)"\\iff"(P V Q) Λ ¬(P Λ Q) "\\iff"(P Λ ¬Q) V (¬ P Λ Q) without using truth table
Solution:
"\\begin{aligned}\n&\\neg(P \\Leftrightarrow Q) \\\\\n&\\Leftrightarrow \\neg((P \\rightarrow Q) \\wedge(Q \\rightarrow P)) \\\\\n&\\Leftrightarrow \\neg((P \\vee \\neg Q) \\wedge(Q \\vee \\neg P)) \\\\\n&\\Leftrightarrow \\neg(((P \\vee \\neg Q) \\wedge Q) \\vee((P \\vee \\neg Q) \\wedge \\neg P)) \\\\\n&\\Leftrightarrow \\neg((P \\wedge Q) \\vee(\\neg Q \\wedge Q) \\vee((P \\wedge \\neg P) \\vee(\\neg Q \\wedge \\neg P)) \\\\\n&\\Leftrightarrow \\neg((P \\wedge Q) \\vee \\neg(P \\vee Q)) \\\\\n&\\Leftrightarrow \\neg(P \\wedge Q) \\wedge \\neg(\\neg(P \\vee Q)) \\\\\n&\\Leftrightarrow(P \\vee Q) \\wedge \\neg(P \\wedge Q) \\ldots(1)\n\\end{aligned}"
Also,
"\\begin{aligned}\n&\\neg(P \\Leftrightarrow Q) \\\\\n&\\Leftrightarrow \\neg((P \\rightarrow Q) \\wedge(Q \\rightarrow P)) \\\\\n&\\Leftrightarrow \\neg((P \\vee \\neg Q) \\wedge(Q \\vee \\neg P)) \\\\\n&\\Leftrightarrow(\\neg P \\wedge Q) \\vee(\\neg Q \\wedge P) \\ldots(2)\n\\end{aligned}"
Therefore the result follows from (1) and (2).
Comments
Leave a comment