Answer to Question #234233 in Discrete Mathematics for anson

Question #234233

Find the transitive closure A={1,2,3,4,5}

R={ (2,3),(3,5),((1,2),(2,5),(1,3),(4,5),(5,2)} by using Warshall’s Algorithm.


1
Expert's answer
2021-09-07T19:06:18-0400

M(R)="\\begin{pmatrix}\n 0 & 1 & 1 & 0 & 0 \\\\\n 0 & 0 & 1 & 0 & 1 \\\\ \n 0 & 0 & 0 & 0 & 1 \\\\\n 0 & 0 & 0 & 0 & 1 \\\\\n 0 & 1 & 0 & 0 & 0 \\\\\n\\end{pmatrix}" matrix of relation R

Step 1: k=1

previous: "\\begin{pmatrix}\n \\bar 0 & \\bar 1 & \\bar 1 & \\bar0 & \\bar0 \\\\\n\\bar 0 & 0 & 1 & 0 & 1 \\\\\n \\bar0 & 0 & 0 & 0 & 1 \\\\\n \\bar0 & 0 & 0 & 0 & 1 \\\\\n \\bar0 & 1 & 0 & 0 & 0 \\\\\n\\end{pmatrix}" next : "\\begin{pmatrix}\n 0 & 1 & 1 & 0 & 0 \\\\\n 0 & 0 & 1 & 0 & 1 \\\\ \n 0 & 0 & 0 & 0 & 1 \\\\\n 0 & 0 & 0 & 0 & 1 \\\\\n 0 & 1 & 0 & 0 & 0 \\\\\n\\end{pmatrix}"

Matrix unchanged

Step 2: k=2

previous:"\\begin{pmatrix}\n 0 & \\bar1 & 1 & 0 &> 0 \\\\\n \\bar0 &\\bar 0 & \\bar1 & \\bar0 & \\bar1 \\\\ \n 0 & \\bar0 & 0 & 0 & 1 \\\\\n 0 & \\bar0 & 0 & 0 & 1 \\\\\n 0 & \\bar1 & >0 & 0& >0 \\\\\n\\end{pmatrix}" next: "\\begin{pmatrix}\n 0 & 1 & 1 & 0 & 1 \\\\\n 0 & 0 & 1 & 0 & 1 \\\\ \n 0 & 0 & 0 & 0 & 1 \\\\\n 0 & 0 & 0 & 0 & 1 \\\\\n 0 & 1 & 1 & 0& 1 \\\\\n\\end{pmatrix}"

Thee edges have added.

Step 3: k=3

previous:"\\begin{pmatrix}\n 0 & 1 & \\bar 1 & 0 & 1 \\\\\n 0 & 0 & \\bar 1 & 0 & 1 \\\\ \n \\bar0 & \\bar 0 & \\bar0 & \\bar0 & \\bar 1\\\\\n 0 & 0 & \\bar0 & 0 & 1 \\\\\n 0 & 1 & \\bar1 & 0& 1 \\\\\n\\end{pmatrix}" next: "\\begin{pmatrix}\n 0 & 1 & 1 & 0 & 1 \\\\\n 0 & 0 & 1 & 0 & 1 \\\\ \n 0 & 0 & 0 & 0 & 1\\\\\n 0 & 0 & 0 & 0 & 1 \\\\\n 0 & 1 & 1 & 0& 1 \\\\\n\\end{pmatrix}"

Matrix is unchanged

Step 4: k=4 Matrix will not change because fourth column is zeros.

Step 5: k=5

"previous:\\begin{pmatrix}\n\n 0 & 1 & 1 & 0 & \\bar1 \\\\\n\n 0 & >0 & 1 & 0 & \\bar1 \\\\ \n\n 0 & > 0 & >0 & 0 & \\bar1\\\\\n\n 0 & >0 &> 0 & 0 & \\bar1 \\\\\n\n \\bar0 & \\bar1 & \\bar1 &\\bar 0& \\bar1 \\\\\n\n\\end{pmatrix}"

final: "\\begin{pmatrix}\n\n 0 & 1 & 1 & 0 & 1 \\\\\n\n 0 & 1& 1 & 0 & 1 \\\\ \n\n 0 & 1 & 1& 0 & 1\\\\\n\n 0 & 1 &1 & 0 & 1 \\\\\n\n 0 & 1 & 1 & 0& 1 \\\\\n\n\\end{pmatrix}" - matrix of transitive closure

Thus "\\bar R" ={(1,2),(1,3),(1,5),(2,2),(2,3),(2,5),(3,2),(3,3),(3,5),(4,2),(4,3),(4,5),(5,2),(5,3),(5,5)}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
APPROVED BY CLIENTS