Use the Euclidean algorithm to find gcd(2074, 2457) = d.
Let us use the Euclidean algorithm to find d=gcd(2074,2457)d=\gcd(2074, 2457)d=gcd(2074,2457):
2457=2074⋅1+3832074=383⋅5+159383=159⋅2+65159=65⋅2+2965=29⋅2+729=7⋅4+17=7⋅1+02457=2074\cdot1+383\\ 2074=383\cdot 5+159\\ 383=159\cdot 2+65\\ 159=65\cdot2+29\\ 65=29\cdot 2+7\\ 29=7\cdot4+1\\ 7=7\cdot1+02457=2074⋅1+3832074=383⋅5+159383=159⋅2+65159=65⋅2+2965=29⋅2+729=7⋅4+17=7⋅1+0
We conclude that d=gcd(2074,2457)=1.d=\gcd(2074, 2457)=1.d=gcd(2074,2457)=1.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments