Question #177796

Use the Euclidean algorithm to find gcd(2074, 2457) = d.


1
Expert's answer
2021-04-13T13:39:37-0400

Let us use the Euclidean algorithm to find d=gcd(2074,2457)d=\gcd(2074, 2457):


2457=20741+3832074=3835+159383=1592+65159=652+2965=292+729=74+17=71+02457=2074\cdot1+383\\ 2074=383\cdot 5+159\\ 383=159\cdot 2+65\\ 159=65\cdot2+29\\ 65=29\cdot 2+7\\ 29=7\cdot4+1\\ 7=7\cdot1+0

We conclude that d=gcd(2074,2457)=1.d=\gcd(2074, 2457)=1.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS