Find  and  if for every positive integer ,
a)Â Â Â Ai={0,i}Â Â Â Â Â Â Â Â Â Â Â b)Â Â Ai=[-i,i].
a)Â Â if for every positive integer i, "A_i=\\{0,i\\}" , then
"\\bigcup\\limits_{i=1}^{+\\infty}A_i=\\bigcup\\limits_{i=1}^{+\\infty}\\{0,i\\}=\\{0\\}\\cup \\bigcup\\limits_{i=1}^{+\\infty}\\{i\\}=\\{0\\}\\cup N"
"\\bigcap\\limits_{i=1}^{+\\infty}A_i=\\bigcap\\limits_{i=1}^{+\\infty}\\{0,i\\}=\\{0\\}"
 b) if for every positive integer i, "A_i=[-i,i]" , then
"\\bigcup\\limits_{i=1}^{+\\infty}A_i=\\bigcup\\limits_{i=1}^{+\\infty}[-i,i]=(-\\infty,+\\infty)"
since for every "x\\in R" there exists "i\\in R" such that "|x|\\leq i", i.g. "x\\in [-i,i]"
"\\bigcap\\limits_{i=1}^{+\\infty}A_i=\\bigcap\\limits_{i=1}^{+\\infty}[-i,i]=A_1=[-1,1]"
since "\\bigcap\\limits_{i=1}^{+\\infty}A_i\\subset A_1" and "A_1\\subset A_i" for all i, which implies that "A_1\\subset\\bigcap\\limits_{i=1}^{+\\infty}A_i"
Comments
Leave a comment