Question #176481

In a class of 35 students it is known that 24 of them do arts, 20 do chemistry and 22 do biology. All the students do at least one of the 3 subjects, 3 do all the three subjects while 7 do art and biology. 6 do art and chemistry but not biology and 8 do chemistry and biology. How many of them do chemistry or biology only or arts only?


1
Expert's answer
2021-03-31T17:00:47-0400

In a class of 45 students 


N(ACB)=45N(A\cup C\cup B)=45

It is known that 24 of them do arts, 20 do chemistry and 22 do biology. 

N(A)=24,N(C)=20,N(B)=22N(A)=24, N(C)=20, N(B)=22

3 do all the three subjects


N(ACB)=3N(A\cap C\cap B)=3

7 do art and biology


N(AB)=7N(A\cap B)=7

6 do art and chemistry but not biology


N(ACBC)=6N(A\cap C \cap B^C)=6

8 do chemistry and biology

N(CB)=8N(C\cap B)=8

Then

N(ABCC)=N(AB)N(ABC)N(A\cap B \cap C^C)=N(A\cap B)-N(A\cap B\cap C)

=73=4=7-3=4

N(BCAC)=N(BC)N(ABC)N(B\cap C\cap A^C)=N(B\cap C)-N(A\cap B\cap C)

83=58-3=5




N(ABCCC)=N(A)N(ABCC)N(A\cap B^C\cap C^C)=N(A)-N(A\cap B\cap C^C)

N(ACBC)N(ABC)-N(A\cap C\cap B^C)-N(A\cap B\cap C)

=24463=11=24-4-6-3=11


N(BACCC)=N(B)N(BACC)N(B\cap A^C\cap C^C)=N(B)-N(B\cap A\cap C^C)

N(BCAC)N(ABC)-N(B\cap C\cap A^C)-N(A\cap B\cap C)

=22453=10=22-4-5-3=10


N(CACBC)=N(C)N(CABC)N(C\cap A^C\cap B^C)=N(C)-N(C\cap A\cap B^C)

N(CBAC)N(ABC)-N(C\cap B\cap A^C)-N(A\cap B\cap C)

=20653=6=20-6-5-3=6

Check


11+10+6+4+6+5+3=4511+10+6+4+6+5+3=45



N(chemistry or biology only)=N(CBAC)=5N(\text{chemistry or biology only})=N(C\cap B\cap A^C)=5


N(arts only )=N(ABCCC)=11N(\text{arts only })=N(A\cap B^C\cap C^C)=11



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS