Write a simple formula that generates the below mentioned terms.
a)Â Â 1,2,2,3,4,4,5,6,6,7,8,8,...
b)Â Â Â 1,10,11,100,101,110,111,1000,1001,1010,1011
a.) 1,2,2,3,4,4,5,6,6,7,8,8,....
General formula "a(n)=a(n-1)+a(n-3)-a(n-4)\\ \\ \\ \\text{For n>4}"
b.) 1,10,11,100,101,110,111,1000,1001,1010,1011
Then if n is a positive integer, n can be expressed uniquely in the form
Given a number n all you need to do it find the k where "2^1+2^2+2^3 ...+2^k < n < 2^1+2^2+2^3 ...2^{(k+1)}" .
The binary representation of "n-(2^1+2^2+2^3 ...2^k)" in k+1 bits is the answer.
Comments
Leave a comment