determine whether {2} and 2 is an element of {{2}, {2,{2}}
"Solution: ~Given~\\{\\{2\\},\\{2,\\{ 2\\}\\}\\}\n\\\\ For~ element ~\\{2\\}:The ~set ~has ~two ~elements. One ~of ~them ~is ~patently~\\{2\\}.\n\\\\\\{2\\} ~is ~ a ~ subset.\n\\\\\\therefore \\{2\\}~ is ~ an ~element~ of ~ the ~set.\n\\\\ For~ element ~2:The ~ set~ contains ~ the ~subset~\\{\\{ 2\\}\\}~(subset~ containing~ a~ subset).\n\\\\The ~set ~contains~ only~ subsets ,while~2 ~is ~not~ a ~ subset~ and~ thus~ 2~ is ~not~ an~ element~\n \\\\of ~the~ set. \n\\\\\\therefore 2~ is~ not ~ an ~element~ of ~ the ~set."
Comments
Leave a comment